精英家教网 > 高中数学 > 题目详情

【题目】是等差数列,是其前项的和,且,则下列结论错误的是(

A. B. C. D. 均为的最大值

【答案】C

【解析】

试题根据题设条件且S5S6S6=S7S8,则可判断A的正确性;S5S6S6=S7S8,则a7=0,可判断B正确;在等差数列中Sn等差数列的前n项和公式存在最大值可判断数列的单调性,这样可判断D的正确性;利用数列的前n项和定义与等差数列的性质,来判断D的正确性解:∵S5S6S6=S7S8,则A正确;∵S6=S7∴a7=0∴B正确;∵S5S6S6=S7S8,则a60a7=0a80∴d0A正确∵a6+a7+a8+a9=2a7+a8)<0∴S9S5C错误.故选C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现在,很多人都喜欢骑“共享单车”,但也有很多市民并不认可.为了调查人们对这种交通方式的认可度,某同学从交通拥堵不严重的A城市和交通拥堵严重的B城市分别随机调查了20名市民,得到了一个市民是否认可的样本,具体数据如下列联表

附:

根据表中的数据,下列说法中,正确的是(

A. 没有95% 以上的把握认为“是否认可与城市的拥堵情况有关”

B. 有99% 以上的把握认为“是否认可与城市的拥堵情况有关”

C. 可以在犯错误的概率不超过0.01的前提下认为“是否认可与城市的拥堵情况有关”

D. 可以在犯错误的概率不超过0.025的前提下认为“是否认可与城市的拥堵情况有关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数的图象沿轴向左平移个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数的图象,对于函数有以下四个判断:

①该函数的解析式为;

②该函数图象关于点对称;

③该函数在[,上是增函数;

④函数上的最小值为,则

其中,正确判断的序号是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司制造两种电子设备:影片播放器和音乐播放器.在每天生产结束后,要对产品进行检测,故障的播放器会被移除进行修复. 下表显示各播放器每天制造的平均数量以及平均故障率.

商品类型

播放器每天平均产量

播放器每天平均故障率

影片播放器

3000

4%

音乐播放器

9000

3%

下面是关于公司每天生产量的叙述:

①每天生产的播放器有三分之一是影片播放器;

②在任何一批数量为100的影片播放器中,恰好有4个会是故障的;

③如果从每天生产的音乐播放器中随机选取一个进行检测,此产品需要进行修复的概率是0.03.

上面叙述正确的是___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,右焦点为。斜率为1的直线与椭圆交于两点,以为底边作等腰三角形,顶点为

1)求椭圆的方程;

2)求的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知点M的极坐标为 ,圆C的参数方程为 (α为参数).
(1)直线l过M且与圆C相切,求直线l的极坐标方程;
(2)过点P(0,m)且斜率为 的直线l'与圆C交于A,B两点,若|PA||PB|=6,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知等腰直角三角形的斜边所在直线方程为,其中点在点上方,直角顶点的坐标为

(1)求边上的高线所在直线的方程;

(2)求等腰直角三角形的外接圆的标准方程;

(3)分别求两直角边所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ)已知函数f(x)=|2x﹣3|﹣2|x|,若关于x不等式f(x)≤|a+2|+2a恒成立,求实数a的取值范围; (Ⅱ)已知正数x,y,z满足2x+y+z=1,求证

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若,证明: 上存在唯一零点;

(2)设函数,( 表示中的较小值),若,求的取值范围.

查看答案和解析>>

同步练习册答案