精英家教网 > 高中数学 > 题目详情
已知函数,数列{an},{bn}满足:a1>0,b1>0,an=f(an-1),bn=f(bn-1)(n∈N*,n≥2).
(1)求a1的取值范围,使得对?n∈N*,都有an+1>an
(2)若a1=3,b1=4,求证:对?n∈N*都有
【答案】分析:(1)由=,知==.由an>0(n∈N*),知要使对?n∈N*,都有an+1>an,只须a2>a1,由此能求出a1的取值范围.
(2)当a1=3时,由an+1>an,得,又a1=3,,由bn+1<bn,得(n∈N),由此能够证明有
解答:(1)解:∵=,(1分)
=
==
=(4分)
∵当x>0时,又a1>0,
∴an>0(n∈N*
要使对?n∈N*,都有an+1>an,只须a2>a1,即
解得.(6分)
(2)证明:当a1=3时,由(1)知an+1>an,即,解得
又a1=3则.(7分)
当b1=4时,由(1)知bn+1<bn,得(n∈N*)(8分)
∴bn-an>0(n∈N*
.(n∈N*)(12分)
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

((12分)已知函数.

(Ⅰ) 若数列{an}的首项为a1=1,(n??N+),求{an}的通项公式an

 (Ⅱ) 设bn=an+12+an+22+??+a2n+12,是否存在最小的正整数k,使对于任意n??N+bn<成立. 若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年浙江省金华市十校联考高一(下)期末数学试卷(解析版) 题型:解答题

已知函数,数列an满足
(1)求数列{an}的通项公式;
(2)令Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1,求a2n-1-a2n+1及Tn
(3)令对一切n∈N*成立,求最小正整数m.

查看答案和解析>>

科目:高中数学 来源:2011年上海市黄浦区高考数学二模试卷(理科)(解析版) 题型:解答题

已知函数,数列{an}满足 a1=a(a≠-1,a∈R),an+1=f(an)(n∈N*).
(1)若数列{an}是常数列,求a的值;
(2)当a1=4时,记,证明数列{bn}是等比数列,并求出通项公式an

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省高三第五次模拟理数试卷(解析版) 题型:选择题

已知函数若数列{an}满足annN)且{an}是递减数列,则实数a的取值范围是(   )

A.(,1)           B.()          C.()         D.(,1)

 

查看答案和解析>>

科目:高中数学 来源:2008-2009学年浙江省宁波市镇海中学高三(上)期中数学试卷(文科)(解析版) 题型:填空题

已知函数,数列an满足an=f(n)(n∈N*),且an是递增数列,则实数a的取值范围是    

查看答案和解析>>

同步练习册答案