精英家教网 > 高中数学 > 题目详情

((12分)已知函数.

(Ⅰ) 若数列{an}的首项为a1=1,(n??N+),求{an}的通项公式an

 (Ⅱ) 设bn=an+12+an+22+??+a2n+12,是否存在最小的正整数k,使对于任意n??N+bn<成立. 若存在,求出k的值;若不存在,说明理由.

(I)(Ⅱ)k=8


解析:

解:(Ⅰ)∵, ∴   由y=解得:    ∴  …(3分) 

(Ⅱ)由题意得:  ∴                   

∴{}是以=1为首项,以4为公差的等差数列.  ∴,  ∴

(Ⅲ)∴

,∴ {bn}是一单调递减数列.∴,要使,则 ,

k??N*  ,∴k??8 ,∴kmin=8即存在最小的正整数k=8,使得  …(12分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2-2x+c在x=-2时有极大值6,在x=1时有极小值,
(1)求a,b,c的值;
(2)求f(x)在区间[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
a•sinx•cosx•cos2x-6cos22x+3
,且f(
π
24
)=0

(Ⅰ)求函数f(x)的周期T和单调递增区间;
(Ⅱ)若f(θ)=-3,且θ∈(-
24
π
24
)
,求θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=asinx+bcosx+c的图象上有一个最低点(
11π
6
,-1)

(Ⅰ)如果x=0时,y=-
3
2
,求a,b,c.
(Ⅱ)如果将图象上每个点的纵坐标不变,横坐标缩小到原来的
3
π
,然后将所得图象向左平移一个单位得到y=f(x)的图象,并且方程f(x)=3的所有正根依次成为一个公差为3的等差数列,求y=f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N*),其中x1为正实数.
(Ⅰ)用xn表示xn+1
(Ⅱ)若x1=4,记an=lg
xn+2xn-2
,证明数列{an}成等比数列,并求数列{xn}的通项公式;
(Ⅲ)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则函数f(x)的解析式为(  )
A、f(x)=2sin(
1
2
x+
π
6
)
B、f(x)=2sin(
1
2
x-
π
6
)
C、f(x)=2sin(2x-
π
6
)
D、f(x)=2sin(2x+
π
6
)

查看答案和解析>>

同步练习册答案