【题目】已知函数
(
,
为常数)在
内有两极值点![]()
(1)求实数a的取值范围;
(2)求证:
.
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,PA
平面ABCD,EB//PA,AB=PA=4,EB=2,F为PD的中点.
![]()
(1)求证AF
PC
(2)BD//平面PEC
(3)求二面角D-PC-E的大小
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代数学名草《周髀算经》曾记载有“勾股各自乘,并而开方除之”,用符号表示为
,我们把a,b,c叫做勾股数.下列给出几组勾股数:3,4,5;5,12,13;7,24,25;9,40,41,以此类推,可猜测第5组股数的三个数依次是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)当
时,求曲线
在点
处的切线方程;
(2)当
时,若关于
的方程
有唯一实数解,试求实数
的取值范围;
(3)若函数
有两个极值点
,
,且不等式
恒成立,试求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】至2018年底,我国发明专利申请量已经连续8年位居世界首位,下表是我国2012年至2018年发明专利申请量以及相关数据.
总计 | ||||||||
年代代码 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 28 |
申请量 | 65 | 82 | 92 | 110 | 133 | 138 | 154 | 774 |
| 65 | 164 | 276 | 440 | 665 | 828 | 1078 | 3516 |
>
注:年代代码1~7分别表示2012~2018.
(1)可以看出申请量每年都在增加,请问这几年中那一年的增长率达到最高,最高是多少?
(2)建立
关于
的回归直线方程(精确到0.01),并预测我国发明专利申请量突破200万件的年份.
参考公式:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知曲线
的参数方程为
,以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
与曲线
两交点所在直线的极坐标方程;
(2)若直线
的极坐标方程为
,直线
与
轴的交点为
,与曲线
相交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,已知曲线
:
和曲线
:
,以极点
为坐标原点,极轴为
轴非负半轴建立平面直角坐标系.
(1)求曲线
和曲线
的直角坐标方程;
(2)若点
是曲线
上一动点,过点
作线段
的垂线交曲线
于点
,求线段
长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=x-
(a>0),g(x)=2lnx+bx且直线y=2x-2与曲线y=g(x)相切.
(1)若对[1,+
)内的一切实数x,小等式f(x)≥g(x)恒成立,求实数a的取值范围;
(2)当a=l时,求最大的正整数k,使得对[e,3](e=2.71828是自然对数的底数)内的任意k个实数x1,x2,,xk都有
成立;
(3)求证:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com