精英家教网 > 高中数学 > 题目详情

【题目】已知函数为常数)在内有两极值点

1)求实数a的取值范围;

2)求证:.

【答案】12)证明见解析

【解析】

1)函数有两个极值点,转化为内有两个不相等的实数解,利用函数的单调性和零点存在性定理即可得实数a的取值范围;

2)构造新函数,利用单调性即可证明.

1)由,可得

,有题意,知上存在两个零点.

时,,则上递增,至少有一个零点,不合题意;

时,由,得

i)若,即时,上递减,递增;

,且

从而上各有一个零点.

所以上存在两个零点.

ii)若,即时,上递减,至多一个零点,舍去.

iii)若,即时,此时上有一个零点,而在上没有零点,舍去.

综上可得,.

2)令

所以,上递增,从而

,且递增;

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是正方形,PA平面ABCD,EB//PA,AB=PA=4,EB=2,F为PD的中点.

(1)求证AFPC

(2)BD//平面PEC

(3)求二面角D-PC-E的大小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数.

1)当时,求曲线处的切线方程:

2)当>0时,求函数的单调区间和极值;

3)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学名草《周髀算经》曾记载有勾股各自乘,并而开方除之,用符号表示为,我们把abc叫做勾股数.下列给出几组勾股数:345512137242594041,以此类推,可猜测第5组股数的三个数依次是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)当时,若关于的方程有唯一实数解,试求实数的取值范围;

(3)若函数有两个极值点,且不等式恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年底,我国发明专利申请量已经连续8年位居世界首位,下表是我国2012年至2018年发明专利申请量以及相关数据.

总计

年代代码

1

2

3

4

5

6

7

28

申请量(万件)

65

82

92

110

133

138

154

774

65

164

276

440

665

828

1078

3516

注:年代代码1~7分别表示2012~2018.

1)可以看出申请量每年都在增加,请问这几年中那一年的增长率达到最高,最高是多少?

2)建立关于的回归直线方程(精确到0.01),并预测我国发明专利申请量突破200万件的年份.

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)求曲线与曲线两交点所在直线的极坐标方程;

(2)若直线的极坐标方程为,直线轴的交点为,与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知曲线和曲线,以极点为坐标原点,极轴为轴非负半轴建立平面直角坐标系.

(1)求曲线和曲线的直角坐标方程;

(2)若点是曲线上一动点,过点作线段的垂线交曲线于点,求线段长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx=x-a>0),gx=2lnx+bx且直线y=2x2与曲线y=gx)相切.

1)若对[1+)内的一切实数x,小等式fx≥gx)恒成立,求实数a的取值范围;

2)当a=l时,求最大的正整数k,使得对[e3]e=271828是自然对数的底数)内的任意k个实数x1x2,,xk都有成立;

3)求证:

查看答案和解析>>

同步练习册答案