精英家教网 > 高中数学 > 题目详情
6.已知f(x)=sin2(x+$\frac{π}{4}$),若a=f(lg 5),b=f(lg$\frac{1}{5}$),则a+b=1.

分析 推导出f(x)=$\frac{1+sin2x}{2}$,由此能求出a+b的值.

解答 解:f(x)=$\frac{1}{2}$[1-cos(2x+$\frac{π}{2}$)]=$\frac{1+sin2x}{2}$,
∴a=$\frac{1}{2}$+$\frac{sin(2lg5)}{2}$,
b=$\frac{1}{2}$+$\frac{sin(2lg5)}{2}$=$\frac{1}{2}$-$\frac{sin(2lg5)}{2}$,
∴a+b=1.
故答案为:1.

点评 本题考查两数和的求法,是基础题,解题时要认真审题,注意三角函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在测量某物理量的过程中,因仪器和观察的误差,使得n次测量分别得到a1,a2,…an,共n个数据,我们规定所测量物理量的“最佳近似值”a是这样一个量:与其他近似值比较,a与各数据的差的平方和最小.依此规定,从a1,a2,…,an推出的a=(  )
A.$\sqrt{{\frac{a_1^2+a_2^2+…+a_n^2}{n}}}$B.$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{n}$
C.$\root{n}{{a}_{1}{a}_{2}…{a}_{n}}$D.$\frac{n}{\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=$\sqrt{3}$sinxcosx-cos2x+$\frac{1}{2}$,△ABC三个内角A,B,C的对边分别为a,b,c,且f(A)=1.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)求角A的大小;
(Ⅲ)若a=7,b=5,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.“x≥1”是“$\frac{2x-1}{x}$≥1”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不必要又不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某公司计划购买1台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元,在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了 100台这种机器在三年使用期内更 换的易损零件数,得下面柱状图:

记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.
若n=19,求y与x的函数解析式;
(1)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;
(2)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应 购买19个还是20个易损零件?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.定义在R上的偶函数f(x)在(-∞,0]上递减,f(-$\frac{1}{3}$)=0,则满足f(log2x)>0的x的取值范围是x>${2}^{\frac{1}{3}}$或0<x<${2}^{-\frac{1}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将函数y=f(x)图象上每一点的纵坐标保持不变,横坐标扩大到原来的2倍,再把所得的图象沿x轴向右平移$\frac{π}{2}$个单位,这样所得的曲线与y=3sinx的图象相同,则函数y=f(x)的表达式是(  )
A.$f(x)=3sin({\frac{x}{2}-\frac{π}{2}})$B.$f(x)=3sin({\frac{x}{2}+\frac{π}{4}})$C.f(x)=-3sinxD.f(x)=3cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知命题p:方程4x2-4(m-2)x+1=0有两个不相等的负根;命题q:方程x2+3mx+1=0无实根.若p∨q为真,¬q为真,则实数m的取值范围是m≤-$\frac{2}{3}$,或$\frac{2}{3}$≤m<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知:数列{an}满足a1+3a2+32a3+…+3n-1an=n,n∈N*
(1)求数列{an}的通项;
(2)设bn=log3$\frac{3}{{a}_{n}}$,求数列{$\frac{{b}_{n}}{{a}_{n}}$}的前n项和Sn

查看答案和解析>>

同步练习册答案