精英家教网 > 高中数学 > 题目详情

已知函数 函数,若

 

存在,使得成立,则实数的取值范围是(    )

A.        B.            C.             D.

 

 

【答案】

A

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=log
1
3
x

(1)当x∈[
1
3
,3]
时,求f(x)的反函数g(x);
(2)求关于x的函数y=[g(x)]2-2ag(x)+3(a≤3)当x∈[-1.1]时的最小值h(a);
(3)我们把同时满足下列两个性质的函数称为“和谐函数”:
①函数在整个定义域上是单调增函数或单调减函数;
②在函数的定义域内存在区间[p,q](p<q)使得函数在区间[p,q]上的值域为[p2,q2].
(Ⅰ)判断(2)中h(x)是否为“和谐函数”?若是,求出p,q的值或关系式;若不是,请说明理由;
(Ⅱ)若关于x的函数y=
x2-1
+t(x≥1)是“和谐函数”,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.
(1)现已画出函数f(x)在y轴左侧的图象,如图所示,请补完整函数f(x)的图象,并根据图象写出函数f(x)的增区间;
(2)写出函数f(x)的解析式和值域;
(3)若函数f(x)在区间[a,b](a<b)上的值域是[-1,3],则b-a的取值范围是
[2,6]
[2,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄一模)已知函数f(x)=(x+1)[1+ln(x+1)]-kx,k∈R,e≈2.72.
(1)当k=1时,求函数f(x)的单调区间;
(2)是否存在正整数k,使得f(x)>0在(0,+∞)上恒成立?若存在,求出k的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绥化模拟)已知函数f(x)=a(x+
1
x
)+2lnx
,g(x)=x2
(1)若a=
1
2
,时,直线l与函数f(x)和函数g(x)的图象相切于同一点,求切线l的方程
(2)若f(x)在[2,4]内为单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln x-
b
x
(b为实数)
(1)若b=-1,求函数f(x)的极值;
(2)若函数M(x)满足M(x)≥N(x)恒成立,则称M(x)是N(x)的一个“上界函数”.
①如果函数f(x)为g(x)=-Inx的一个“上界函数”,求b的取值范围;
②若b=0,函数F(x)的图象与函数f(x)的图象关于直线y=x对称,求证:当x∈(-2,+∞)时,函数F(x)是函数y=f(
x
2
+1)+
x
2
+1
的一个“上界函数”.

查看答案和解析>>

同步练习册答案