ÒÔÏÂËĸöÃüÌ⣺
¢Ù´ÓÔÈËÙ´«µÝµÄ²úÆ·Éú²úÁ÷Ë®ÏßÉÏ£¬ÖʼìԱÿ20·ÖÖÓ´ÓÖгéȡһ¼þ²úÆ·½øÐÐijÏîÖ¸±ê¼ì²â£¬ÕâÑùµÄ³éÑùÊÇ·Ö²ã³éÑù£®
¢ÚÁ½¸öËæ»ú±äÁ¿Ïà¹ØÐÔԽǿ£¬ÔòÏà¹ØÏµÊýµÄ¾ø¶ÔÖµÔ½½Ó½üÓÚ1£®
¢ÛÔڻعéÖ±Ïß·½³ÌÊýѧ¹«Ê½=0.2x+12ÖУ¬µ±½âÊͱäÁ¿xÿÔö¼ÓÒ»¸öµ¥Î»Ê±£¬Ô¤±¨±äÁ¿Êýѧ¹«Ê½Æ½¾ùÔö¼Ó0.2µ¥Î»£®
¢Ü¶Ô·ÖÀà±äÁ¿XÓëY£¬ËüÃǵÄËæ»ú±äÁ¿K2µÄ¹Û²âÖµkÀ´Ëµ£¬kԽС£¬¡°XÓëYÓйØÏµ¡±µÄ°ÑÎճ̶ÈÔ½´ó
ÆäÖÐÕýÈ·µÄÊÇ


  1. A.
    ¢Ù¢Ü
  2. B.
    ¢Ú¢Û
  3. C.
    ¢Ù¢Û
  4. D.
    ¢Ú¢Ü
B
·ÖÎö£ºµÚÒ»¸öÃüÌâÊÇÒ»¸öϵͳ³éÑù£»Õâ¸ö˵·¨²»ÕýÈ·£¬Á½¸öËæ»ú±äÁ¿Ïà¹ØÐÔԽǿ£¬ÔòÏà¹ØÏµÊýµÄ¾ø¶ÔÖµÔ½½Ó½üÓÚ1£»ÔڻعéÖ±Ïß·½³ÌÖУ¬´úÈëÒ»¸öxµÄÖµ£¬µÃµ½µÄÊÇÔ¤±¨Öµ£¬¶Ô·ÖÀà±äÁ¿XÓëY£¬ËüÃǵÄËæ»ú±äÁ¿K2µÄ¹Û²âÖµkÀ´Ëµ£¬kÔ½´ó£¬¡°XÓëYÓйØÏµ¡±µÄ°ÑÎճ̶ÈÔ½´ó£¬
½â´ð£º´ÓÔÈËÙ´«µÝµÄ²úÆ·Éú²úÁ÷Ë®ÏßÉÏ£¬
ÖʼìԱÿ20·ÖÖÓ´ÓÖгéȡһ¼þ²úÆ·½øÐÐijÏîÖ¸±ê¼ì²â£¬
ÕâÑùµÄ³éÑùÊÇϵͳ³éÑù£¬¹Ê¢Ù²»ÕýÈ·£¬
Á½¸öËæ»ú±äÁ¿Ïà¹ØÐÔԽǿ£¬ÔòÏà¹ØÏµÊýµÄ¾ø¶ÔÖµÔ½½Ó½üÓÚ1£®¢ÚÕýÈ·
ÔڻعéÖ±Ïß·½³ÌÖУ¬µ±½âÊͱäÁ¿xÿÔö¼ÓÒ»¸öµ¥Î»Ê±£¬
Ô¤±¨±äÁ¿Æ½¾ùÔö¼Ó0.2µ¥Î»£®¢ÛÕýÈ·£¬
¶Ô·ÖÀà±äÁ¿XÓëY£¬ËüÃǵÄËæ»ú±äÁ¿K2µÄ¹Û²âÖµkÀ´Ëµ£¬kÔ½´ó£¬
¡°XÓëYÓйØÏµ¡±µÄ°ÑÎճ̶ÈÔ½´ó£¬¢Ü²»ÕýÈ·£®
×ÛÉÏ¿ÉÖª¢Ú¢ÛÕýÈ·£¬
¹ÊÑ¡B£®
µãÆÀ£º±¾Ì⿼²é·Ö²ã³éÑù£¬¿¼²é¶ÀÁ¢ÐÔ¼ìÑ飬¿¼²éÏßÐԻع鷽³Ì£¬ÊÇÒ»¸ö×ÛºÏÌâÄ¿£¬ÕâÖÖÎÊÌâÒ»¶¨ÒªÈ·¶¨Ã¿Ò»¸öÃüÌâÊÇ·ñÕýÈ·£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºµ¥Ñ¡Ìâ

º¯Êýf£¨x£©=cosxsinxµÄͼÏóÏàÁÚµÄÁ½Ìõ¶Ô³ÆÖáÖ®¼äµÄ¾àÀëÊÇ


  1. A.
    Êýѧ¹«Ê½
  2. B.
    Êýѧ¹«Ê½
  3. C.
    ¦Ð
  4. D.
    2¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

£¨²»µÈʽѡ½²Ñ¡×öÌ⣩Èô¹ØÓÚxµÄ²»µÈʽ|x+1|-|x-2|£¼a2-4aÓÐʵÊý½â£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ________£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

ÈôI={x|x¡Ý-1£¬x¡ÊZ}£¬Ôò?IN=________£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

Èçͼ£¬½«ÕýżÊýÅÅÁÐÈç±í£¬ÆäÖеÚiÐеÚj¸öÊý±íʾΪaij£¨i£¬j¡ÊN*£©£¬ÀýÈça43=18£¬Èôaij=2010£¬Ôòi+j=________£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºµ¥Ñ¡Ìâ

ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬µãA£¨5£¬0£©£¬¶ÔÓÚij¸öÕýʵÊýk£¬´æÔÚº¯Êýf£¨x£©=ax2£¨a£¾0£©£¬Ê¹µÃÊýѧ¹«Ê½£¨¦ËΪ³£Êý£©£¬ÕâÀïµãP¡¢QµÄ×ø±ê·Ö±ðΪP£¨1£¬f£¨1£©£©£¬Q£¨k£¬f£¨k£©£©£¬ÔòkµÄȡֵ·¶Î§Îª


  1. A.
    £¨2£¬+¡Þ£©
  2. B.
    £¨3£¬+¡Þ£©
  3. C.
    [4£¬+¡Þ£©
  4. D.
    [8£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

Óɱ¶½Ç¹«Ê½cos2x=2cos2x-1£¬¿ÉÖªcos2x¿ÉÒÔ±íʾΪcosxµÄ¶þ´Î¶àÏîʽ£®¶ÔÓÚcos3x£¬ÎÒÃÇÓÐ
cos3x=cos£¨2x+x£©
=cos2xcosx-sin2xsinx
=£¨2cos2x-1£©cosx-2£¨sinxcosx£©sinx
=2cos3x-cosx-2£¨1-cos2x£©cosx
=4cos3x-3cosx
¿É¼ûcos3x¿ÉÒÔ±íʾΪcosxµÄÈý´Î¶àÏîʽ£®Ò»°ãµØ£¬´æÔÚÒ»¸ön´Î¶àÏîʽPn£¨t£©£¬Ê¹µÃcosnx=Pn£¨cosx£©£¬ÕâЩ¶àÏîʽPn£¨t£©³ÆÎªÇбÈÑ©·ò¶àÏîʽ£®
£¨I£©ÇóÖ¤£ºsin3x=3sinx-4sin3x£»
£¨II£©ÇëÇó³öP4£¨t£©£¬¼´ÓÃÒ»¸öcosxµÄËĴζàÏîʽÀ´±íʾcos4x£»
£¨III£©ÀûÓýáÂÛcos3x=4cos3x-3cosx£¬Çó³ösin18¡ãµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

Õý·½ÌåABCD-A1B1C1D1ÖУ¬ÒìÃæÖ±ÏßBD1ÓëAA1Ëù³ÉµÄ½ÇµÄ´óСÊÇ________£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

ÒÑÖªÇøÓòDÂú×ãÊýѧ¹«Ê½£¬ÄÇÃ´ÇøÓòDÄÚÀë×ø±êÔ­µãO¾àÀë×îÔ¶µÄµãPµÄ×ø±êΪ________£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸