精英家教网 > 高中数学 > 题目详情
已知数列{an}中,a1=-30,an+1=an+3,求a6及数列{an}的前6项和S6的值.
分析:由条件可得an+1-an=3,可得数列{an}是以a1=-30为首项,d=3为公差的等差数列,分别代入通项公式与求和公式计算可得.
解答:解:∵an+1=an+3,∴an+1-an=3,
∴数列{an}是以a1=-30为首项,d=3为公差的等差数列,
∴a6=a1+5d=-30+3×5=-15,
∴前6项和S6=6×(-30)+
6×5
2
×3
=-135
点评:本题考查等差数列的通项公式和求和公式,涉及等差关系的确定,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案