精英家教网 > 高中数学 > 题目详情
如图,三棱柱ABC-A1B1C1的侧面AA1B1B为正方形,侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C.
(I)求证:平面AA1B1B⊥平面BB1C1C;
(II)求二面角B-AC-A1的余弦值.
分析:(Ⅰ)利用线面、面面垂直的判定定理即可证明;
(Ⅱ)通过建立空间直角坐标系,利用两平面的法向量的夹角即可得到二面角.
解答:证明:(Ⅰ)由侧面AA1B1B为正方形,知AB⊥BB1
又AB⊥B1C,BB1∩B1C=B1,∴AB⊥平面BB1C1C,
又AB?平面AA1B1B,∴平面AA1B1B⊥BB1C1C.
(Ⅱ)由题意,CB=CB1,设O是BB1的中点,连接CO,则CO⊥BB1
由(Ⅰ)知,CO⊥平面AB1B1A.建立如图所示的坐标系O-xyz.
其中O是BB1的中点,Ox∥AB,OB1为y轴,OC为z轴.
不妨设AB=2,则A(2,-1,0),B(0,-1,0),C(0,0,
3
),A1(2,1,0).
AB
=(-2,0,0),
AC
=(-2,1,
3
),
AA1
=(0,2,0)

n1
=(x1,y1,z1)为面ABC的法向量,则
n1
AB
=0,
n1
AC
=0,
-2x1=0
-2x1+y1+
3
z1=0
取z1=-1,得
n1
=(0,
3
,-1).
n2
=(x2,y2,z2)为面ACA1的法向量,则
n2
AA1
=0,
n2
AC
=0,
2y2=0
-2x2+y2+
3
z2=0
取x2=
3
,得
n2
=(
3
,0,2).
所以cos?n1,n2>=
n1
n2
|
n1
| |
n2
|
=-
7
7

因此二面角B-AC-A1的余弦值为-
7
7
点评:熟练掌握线面、面面垂直的判定定理、通过建立空间直角坐标系并利用两平面的法向量的夹角求二面角的方法是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,∠ACB=90°,CC1⊥平面ABC,AC=BC=CC1=1,则直线A1C1和平面ACB1的距离等于
 
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,D、E分别为AA1、B1C的中点,AB=AC.
(1)证明:DE⊥平面BCC1
(2)设B1C与平面BCD所成的角的大小为30°,求二面角A-BD-C.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黑龙江)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=
12
AA1,D是棱AA1的中点.
(Ⅰ)证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1的底面ABC为正三角形,侧棱AA1⊥平面ABC,D是BC中点,且AA1=AB
(1)证明:AD⊥BC1
(2)证明:A1C∥平面AB1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连二模)如图,三棱柱ABC-A′B′C′,cc′=
2
,BC′=
2
,BC=2,△ABC是以BC为底边的等腰三角形,平面ABC⊥平面BCC′B′,E、F分别为棱AB、CC′的中点.
(I)求证:EF∥平面A′BC′;
(Ⅱ)若AC≤
2
,且EF与平面ACC'A'所成的角的余弦为
7
3
,求二面角C-AA'-B的大小.

查看答案和解析>>

同步练习册答案