精英家教网 > 高中数学 > 题目详情
(本题20分,第1小题满分4分,第2小题满分6分,第3小题6分,第4小题4分)
我们知道,判断直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置关系有类似的判别方法吗?请同学们进行研究并完成下面问题。
(1)设F1、F2是椭圆的两个焦点,点F1、F2到直线的距离分别为d1、d2,试求d1·d2的值,并判断直线L与椭圆M的位置关系。
(2)设F1、F2是椭圆的两个焦点,点F1、F2到直线       mn不同时为0)的距离分别为d1、d2,且直线L与椭圆M相切,试求d1·d2的值。
(3)试写出一个能判断直线与椭圆的位置关系的充要条件,并证明。
(4)将(3)中得出的结论类比到其它曲线,请同学们给出自己研究的有关结论(不必证明)。
(本题20分,第1小题满分4分,第2小题满分6分,第3小题6分,第4小题4分)
(1); ………………2分
联立方程; …………3分
与椭圆M相交。 …………4分
(2)联立方程组
消去

(3)设F1、F2是椭圆的两个焦点,点F1、F2到直线
的距离分别为d1、d2,且F1、F2在直线L的同侧。那么直线L与椭圆相交的充要条件为:;直线L与椭圆M相切的充要条件为:;直线L与椭圆M相离的充要条件为: ……14分
证明:由(2)得,直线L与椭圆M相交

命题得证。
(写出其他的充要条件仅得2分,未指出“F1、F2在直线L的同侧”得3分)
(4)可以类比到双曲线:设F1、F2是双曲线的两个焦点,点F1、F2到直线距离分别为d1、d2,且F1、F2在直线L的同侧。那么直线L与双曲线相交的充要条件为:;直线L与双曲线M相切的充要条件为:;直线L与双曲线M相离的充要条件为:………………20分
(写出其他的充要条件仅得2分,未指出“F1、F2在直线L的同侧”得3分)
同答案
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设AB是椭圆)的长轴,若把AB100等分,过每个分点作AB的垂线,交椭圆的上半部分于P1、P2、…、P99 ,F1为椭圆的左焦点,则+…的值是                               (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

试确定的取值范围,使得椭圆上有不同两点关于直线对称.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过三点.
(1)求椭圆的方程:
(2)若点D为椭圆上不同于的任意一点,,当内切圆的面积最大时。求内切圆圆心的坐标;
(3)若直线与椭圆交于两点,证明直线与直线的交点在直线上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线相交于两点,且(其中O为坐标原点).
(1)若椭圆的离心率为,求椭圆的标准方程;(2)求证:不论如何变化,椭圆恒过第一象限内的一个定点,并求点的坐标;(3)若椭圆的离心率,求椭圆长轴长的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设0≤α<2π,若方程x2sinα-y2cosα=1表示焦点在y轴上的椭圆,则α的取值范围是         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

的周长为16,且,则顶点的轨迹是(      )
A.圆B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点是椭圆)上两点,且,则=        

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,则的大小关系为__________________。

查看答案和解析>>

同步练习册答案