精英家教网 > 高中数学 > 题目详情

设函数f(x)=|2x-m|+4x.
(I)当m=2时,解不等式:f(x)≤1;
(Ⅱ)若不等式f(x)≤2的解集为{x|x≤-2},求m的值.

解:(I)当m=2时,函数f(x)=|2x-2|+4x,由不等式f(x)≤1 可得 ①,或 ②
解①可得x∈∅,解②可得x≤-,故不等式的解集为 {x|x≤- }.
(Ⅱ)∵f(x)=,连续函数f(x) 在R上是增函数,由于f(x)≤2的解集为{x|x≤-2},
故f(-2)=2,当≥-2时,有2×(-2)+m=2,解得 m=6.
<-2时,则有6×(-2)-m=2,解得 m=-14.
综上可得,当 m=6或 m=-14 时,f(x)≤2的解集为{x|x≤-2}.
分析:(I)当m=2时,函数f(x)=|2x-2|+4x,由不等式f(x)≤1 可得 ①,或 ②,分别求出①②的解集,再取并集,即得所求.
(Ⅱ)由f(x)=,可得连续函数f(x) 在R上是增函数,故有f(-2)=2,分当≥-2和当<-2两种情况,分别求出m的值,即为所求.
点评:本题主要考查带有绝对值的函数,绝对值不等式的解法,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)在(-∞,+∞)内有定义,对于给定的正数k,定义函数fk(x)=
f(x),f(x)≤k
k,f(x)>k
.设函数f(x)=2+x-ex,若对任意的x∈(-∞,+∞)恒有fk(x)=f(x),则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinx,
3
4
),
b
=(cosx,-1).
(1)当
a
b
时,求cos2x-sin2x的值;
(2)设函数f(x)=2(
a
+
b
)•
b
,求f(x)的值域.(其中x∈(0,
24
))

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2|x+1-|x-1|,则满足f(x)≥2
2
的x取值范围为
[
3
4
,+∞)
[
3
4
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2-x -1  x≤0
x
1
2
x>0
,则f[f(-1)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2,x<1
x-1
,x≥1
 则f(f(f(1)))=
1
1

查看答案和解析>>

同步练习册答案