精英家教网 > 高中数学 > 题目详情
已知数列{an}是等差数列,a2=8,a8=26,从{an}中依次取出第3项,第9项,第27项,…,第3n项,按原来的顺序构成一个新数列{bn},则bn=
3×3n+2
3×3n+2
分析:由题意等差数列{an}中a2=8,a8=26,建立首项与公差的方程求出即可得到数列{an}的通项公式an;第3项,第9项,第27项,…,第3n项,按原来的顺序排成一个新数列{bn},求出通项即可.
解答:解:设{an}的首项为a1,公差为d,
a1+d=8
a1+7d=26,   
a1=5
d=3

∴an=5+3(n-1),即an=3n+2
由题意,设b1=a3,b2=a9,b3=a27,所以bn=a3n=3×3n+2.
故答案为:3×3n+2.
点评:本题考查等差数列与等比数列的综合,考查由等差数列的性质求其通项,以及据其性质构造等比数列,利用分组求和的技巧求新数列的和,其特征是一个数列的通项如果一个等差数列的项与一个等比数列的项,则可以采用分组的方法求和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义一个“等积数列”:在一个数列中,如果每一项与它后一项的积都是同一常数,那么这个数列叫“等积数列”,这个常数叫做这个数列的公积.已知数列{an}是等积数列,且a1=2,公积为5,则这个数列的前n项和Sn的计算公式为:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在一个数列中,如果?n∈N*,都有an•an+1•an+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{an}是等积数列,且a1=1,a2=3,公积为27,则a1+a2+a3+…+a18=
78
78

查看答案和解析>>

科目:高中数学 来源: 题型:

定义“等积数列”:在一个数列中,如果每一个项与它的后一项的积都为同一个常数,那末这个数列叫做等积数列,这个常数叫做该数列的公积.已知数列{an}是等积数列,且a1=2,公积为5,Tn为数列{an}前n项的积,则T2011=
51006
2
51006
2

查看答案和解析>>

科目:高中数学 来源: 题型:

我们对数列作如下定义,如果?n∈N*,都有anan+1an+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{an}是等积数列,且a1=1,a2=2,公积为6,则a1+a2+a3+…+a9=
18
18

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列的定义为:在一个数列中,从第二项起,如果每一项与它的前一项的差都为同一个常数,那么这个数列叫做等差数列,这个常数叫做该数列的公差.
(1)类比等差数列的定义给出“等和数列”的定义;
(2)已知数列{an}是等和数列,且a1=2,公和为5,求 a18的值,并猜出这个数列的通项公式(不要求证明).

查看答案和解析>>

同步练习册答案