精英家教网 > 高中数学 > 题目详情

(2006·北京)已知点M(20)N(20),动点P满足条件,设动点P的轨迹为W

(1)W的方程;

(2)ABW上的不同两点,O是坐标原点,求的最小值.

答案:略
解析:

解法一:

(1)知动点P的轨迹是以MN为焦点的双曲线的右支,实半轴长

又半焦距c=2,故虚半轴长

所以W的方程为

(2)AB的坐标分别为

轴时,,从而

AB不与x轴垂直时,设直线AB的方程为y=kxm,与W的方程联立,消去y

,所以

又因为,所以,从而

综上,当轴时,取得最小值2

解法二:

(1)同解法一.

(2)AB的坐标分别为,,则

.令,则,且.所以

当且仅当,即时“=”成立.

所以的最小值是2


练习册系列答案
相关习题

科目:高中数学 来源: 题型:013

(2006北京东城模拟)已知直线y=2x上一点P的横坐标为a,有两个点A(11)B(33),那么使向量夹角为钝角的一个充分但不必要的条件是

[  ]

A.-1a2

B0a1

C

D0a2

查看答案和解析>>

科目:高中数学 来源: 题型:013

(2006北京东城模拟)已知是首项为1,公比为q的等比数列,

(其中[t]表示不大于t的最大整数,例如[2.5]=2).如果数列有极限,那么公比q的取值范围是

[  ]

A.-1q1,且q0

B.-1q1,且q0

C.-3q1,且q0

D.-3q1,且q0

查看答案和解析>>

科目:高中数学 来源: 题型:013

(2006北京东城模拟)在△ABC中,已知sinC=2sin(BC)cosB,那么△ABC一定是

[  ]

A.等腰直角三角形

B.等腰三角形

C.直角三角形

D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:013

(2006北京崇文模拟)已知,则的值为

[  ]

A

B

C

D

查看答案和解析>>

科目:高中数学 来源: 题型:044

(2006北京东城模拟)一个电子元件,出厂前要进行五项指标检查,如果至少有两项指标不合格,则这个元件不能出厂,已知每项指标是否合格是相互独立的,且每项检查出现不合格的概率都是

(1)求这个电子元件不能出厂的概率;

(2)某个这种元件直到五项指标全部检查完,才能确定该元件是否可以出厂,求这种情况的概率.

查看答案和解析>>

同步练习册答案