精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.
(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性;
(3)当a=1时,求函数f(x))在[-3,0]上的最大值和最小值.(参考数据:e≈2.71828,e2≈7.38905)
分析:(1)把a=0代入到f(x)中化简得到f(x)的解析式,求出f'(x),因为曲线的切点为(1,f(1)),所以把x=1代入到f'(x)中求出切线的斜率,把x=1代入到f(x)中求出f(1)的值得到切点坐标,根据切点和斜率写出切线方程即可;
(2)求出函数的导数,对a进行讨论,分别判断函数的单调性,最后根据a的不同取值得出的结论综上所述即可;
(3)研究闭区间上的最值问题,先求出函数的极值,比较极值和端点处的函数值的大小,最后确定出最大值与最小值.
解答:解:(1)当a=0时,f(x)=x2ex,f'(x)=(x2+2x)ex,故f'(1)=3e,
所以曲线y=f(x)在点(1,f(1))处的切线的斜率为3e,f(1)=e,
所以该切线方程为y-e=3e(x-1),
整理得:3ex-y-2e=0.
(2)f′(x)=[x2+(a+2)x-2a2+4a]ex
令f′(x)=0  解得x=-2a  或x=a-2以下分三种情况讨论.
①若a>
2
3
,则-2a<a-2.当x变化时,f′(x),f(x)的变化如下表:
-
所以f(x)在(-∞,-2a),(a-2,+∞)内是增函数在(-a,a-2)内是减函数
②若a<
2
3
,则-2a>a-2
当x变化时,f′(x),f(x)的变化如下表:

所以f(x)在(-∞,a-2),(-2a,+∞)内是增函数,在(a-2,-2a)内是减函数,
③若a=
2
3
,则-2a=a-2函数f(x)在(-∞,+∞)内单调递增,
(3)由(2),当a=1时,得f(x)在(-∞,-2)递增,在(-1,+∞)递增,
在在(-2,-1)递减,
∴f(-2)=3e-2是f(x)在x∈[-3,0]的极大值;
f(-1)=e-1是f(x)在x∈[-3,0]的极小值(8分)
又f(0)=1,f(-3)=7e-3
∴最大值为f(0)=1,最小值为f(-3)=7e-3
点评:考查学生会利用导数求曲线上过某点切线方程的斜率,会利用导数研究函数的单调性以及根据函数的增减性得到函数的极值.灵活运用分类讨论的数学思想解决数学问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案