精英家教网 > 高中数学 > 题目详情
11.如果点P在平面区域$\left\{\begin{array}{l}{2x-y+2≥0}\\{x+y-2≥0}\\{x-3≤0}\end{array}\right.$,点Q在曲线x2+(y+2)2=1上,那么|PQ|的最小值为(  )
A.$\frac{4}{\sqrt{5}}$-1B.2$\sqrt{2}$-1C.2D.$\sqrt{10}$-1

分析 画出平面区域以及Q在的曲线,利用圆上的点到区域内点的距离求最小值.

解答 解:P所在的平面区域如图:过圆心(0,-2)作直线x+y-2=0的垂线,垂直为Q,与圆交于P,则|PQ|所求,
由点到直线的距离得到|PQ|=$\frac{|-2-2|}{\sqrt{2}}-1=2\sqrt{2}-1$;
故选B.

点评 本题考查了简单线性规划问题,求线段长度的最小值,关键|PQ|的几何意义得到最小值的位置.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知m≠0,向量$\overrightarrow a$=(m,3m),向量$\overrightarrow b$=(m+1,6),集合A={x|(x-m2)(x+m-2)=0}.
(1)判断“$\overrightarrow a$∥$\overrightarrow b$”是“|${\overrightarrow a}$|=$\sqrt{10}$”的什么条件
(2)设命题p:若$\overrightarrow a$⊥$\overrightarrow b$,则m=-19,命题q:若集合A的子集个数为2,则m=1,判断p∨q,p∧q,¬q的真假,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(x)<f(3)的x的取值范围是(-3,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求值:
(1)cos(-420°)
(2)$sin(-\frac{π}{6})$
(3)$sin(-\frac{31π}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合A={1,3,x2},B={x+2,1},若B⊆A,求实数x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上一点A关于原点的对称点为B,F为其右焦点,若AF⊥BF,且∠ABF=$\frac{π}{4}$,则椭圆的离心率为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},x>0}\\{-{x}^{2}+4x,x≤0}\end{array}\right.$,若|f(x)|≥ax-1恒成立,则实数a的取值范围是[-6,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知M={0,x},N={1,2},若M∩N={1},则M∪N=(  )
A.{0,x,1,2}B.{1,2,0,1}C.{0,1,2}D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知扇形的周长为10cm,面积为4cm2,则扇形的圆心角为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案