精英家教网 > 高中数学 > 题目详情
16.已知m≠0,向量$\overrightarrow a$=(m,3m),向量$\overrightarrow b$=(m+1,6),集合A={x|(x-m2)(x+m-2)=0}.
(1)判断“$\overrightarrow a$∥$\overrightarrow b$”是“|${\overrightarrow a}$|=$\sqrt{10}$”的什么条件
(2)设命题p:若$\overrightarrow a$⊥$\overrightarrow b$,则m=-19,命题q:若集合A的子集个数为2,则m=1,判断p∨q,p∧q,¬q的真假,并说明理由.

分析 (1)由$\overrightarrow a∥\overrightarrow b$,则6m=3m(m+1解出m即可判断出结论.
(2)若$\overrightarrow a⊥\overrightarrow b$,则m(m+1)+18m=0,解出m,即可判断出p真假.由(x-m2)(x+m-2)=0得x=m2,或x=2-m,若集合A的子集个数为2,则集合A中只有1个元素,
则m2=2-m,解得m,即可判断出真假.

解答 解:(1)若$\overrightarrow a∥\overrightarrow b$,则6m=3m(m+1),∴m=1(m=0舍去),此时,$\overrightarrow a=({1,3}),|{\overrightarrow a}|=\sqrt{10}$,
若$|{\overrightarrow a}|=\sqrt{10}$,则m=±1,故“$\overrightarrow a∥\overrightarrow b$”是“$|{\overrightarrow a}|=\sqrt{10}$”的充分不必要条件.
(2)若$\overrightarrow a⊥\overrightarrow b$,则m(m+1)+18m=0,∴m=-19(m=0舍去),∴p为真命题.
由(x-m2)(x+m-2)=0得x=m2,或x=2-m,若集合A的子集个数为2,则集合A中只有1个元素,
则m2=2-m,解得m=1或-2,∴q为假命题.
∴p∨q为真命题,p∧q为假命题,¬q为真命题.

点评 本题考查了向量共线定理、向量垂直与数量积的关系、集合的运算性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.60°角的弧度数是(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在一次英语考试中,考试的成绩服从正态分布(100,36),那么考试成绩在区间(88,112]内的概率是(  )
A.0.6826B.0.3174C.0.9544D.0.9974

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\frac{3x+1}{x-1}$的值域是(-∞,3)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}是无穷数列,满足lgan+1=|lgan-lgan-1|(n=2,3,4,…).
(Ⅰ)若a1=2,a2=3,求a3,a4,a5的值;
(Ⅱ)求证:“数列{an}中存在ak(k∈N*)使得lgak=0”是“数列{an}中有无数多项是1”的充要条件;
(Ⅲ)求证:在数列{an}中?ak(k∈N*),使得1≤ak<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ax-$\frac{1}{x}$-(a+1)lnx,a∈R.
(I)若a=-2,求函数f(x)的单调区间;
(Ⅱ)若a≥1,且f(x)>1在区间[$\frac{1}{e}$,e]上恒成立,求a的取值范围;
(III)若a>$\frac{1}{e}$,判断函数g(x)=x[f(x)+a+1]的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2+2ax+a2-1.
(1)若对任意的x∈R均有f(1-x)=f(1+x),求实数a的值;
(2)当x∈[-1,1]时,求f(x)的最小值,用g(a)表示其最小值,判断g(a)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.现有6道题,其中3道甲类题,2道乙类题,张同学从中任取2道题解答.试求:
(I)所取的2道题都是甲类题的概率;
(II)所取的2道题不是同一类题的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如果点P在平面区域$\left\{\begin{array}{l}{2x-y+2≥0}\\{x+y-2≥0}\\{x-3≤0}\end{array}\right.$,点Q在曲线x2+(y+2)2=1上,那么|PQ|的最小值为(  )
A.$\frac{4}{\sqrt{5}}$-1B.2$\sqrt{2}$-1C.2D.$\sqrt{10}$-1

查看答案和解析>>

同步练习册答案