精英家教网 > 高中数学 > 题目详情
7.在一次英语考试中,考试的成绩服从正态分布(100,36),那么考试成绩在区间(88,112]内的概率是(  )
A.0.6826B.0.3174C.0.9544D.0.9974

分析 根据考生的成绩服从正态分布(100,36),得到正态曲线关于x=100对称,根据3σ原则知P(88<x<112)=P(100-2×6<x<100+2×6)=0.9544,得到结果.

解答 解:∵考生的成绩服从正态分布(100,36),
∴正态曲线关于x=100对称,且标准差为6,
根据3σ原则知P(88<x<112)=P(100-2×6<x<100+2×6)=0.9544,
故选:C.

点评 本题考查正态分布曲线的特点及曲线所表示的意义,解题的关键是注意利用正态曲线的对称性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若tanα=$\frac{4}{3}$,则cos2α+sin2α=$\frac{33}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.从某中学高三年级中随机抽取了6名男生,其身高和体重的数据如表所示:
编号123456
身高/cm170168178168176172
体重/kg656472616767
由以上数据,建立了身高x预报体重y的回归方程$\hat y$=0.80x-71.6.那么,根据上述回归方程预报一名身高为175cm的高三男生的体重是(  )
A.80 kgB.71.6 kgC.68.4 kgD.64.8 kg

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数定义域为D的函数f(x),如果对x∈D,存在正数k,有|f(x)|≤k|x|成立,则称函数f(x)是D上的“倍约束函数”,已知下列函数:(1)f(x)=2x; (2)f(x)=sin(x+$\frac{π}{4}$);(3)f(x)=$\sqrt{x-1}$;(4)f(x)=$\frac{x}{{x}^{2}+x+1}$;其中是“倍约束函数”的是(  )
A.(1)(3)(4)B.(1)(2)C.(3)(4)D.(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.O为△ABC内一点,且2$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,$\overrightarrow{AD}$=t$\overrightarrow{AC}$,若B,O,D三点共线,则t的值为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.集合A={x|x≥1},B={x|x2<9},则A∩B=(  )
A.(1,3)B.[1,3)C.[1,+∞)D.[2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知圆G:x2+y2-2x-$\sqrt{2}$y=0经过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F及上顶点B,过椭圆外一点(m,0)(m>a)且倾斜角为$\frac{5}{6}$π的直线l交椭圆于C,D两点.
(I)求椭圆的方程;
(Ⅱ)若FC⊥FD,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知m≠0,向量$\overrightarrow a$=(m,3m),向量$\overrightarrow b$=(m+1,6),集合A={x|(x-m2)(x+m-2)=0}.
(1)判断“$\overrightarrow a$∥$\overrightarrow b$”是“|${\overrightarrow a}$|=$\sqrt{10}$”的什么条件
(2)设命题p:若$\overrightarrow a$⊥$\overrightarrow b$,则m=-19,命题q:若集合A的子集个数为2,则m=1,判断p∨q,p∧q,¬q的真假,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(x)<f(3)的x的取值范围是(-3,3).

查看答案和解析>>

同步练习册答案