精英家教网 > 高中数学 > 题目详情
2.O为△ABC内一点,且2$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,$\overrightarrow{AD}$=t$\overrightarrow{AC}$,若B,O,D三点共线,则t的值为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 以OB,OC为邻边作平行四边形OBFC,连接OF与 BC相交于点E,E为BC的中点.2$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,可得$\overrightarrow{OB}+\overrightarrow{OC}$=-2$\overrightarrow{OA}$=$\overrightarrow{OF}$=2$\overrightarrow{OE}$,因此点O是直线AE的中点.可得B,O,D三点共线,$\overrightarrow{AD}$=t$\overrightarrow{AC}$,∴点D是BO与AC的交点.过点O作OM∥BC交AC于点M,点M为AC的中点.利用平行线的性质即可得出.

解答 解:以OB,OC为邻边作平行四边形OBFC,连接OF与 BC相交于点E,E为BC的中点.
∵2$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,∴$\overrightarrow{OB}+\overrightarrow{OC}$=-2$\overrightarrow{OA}$=$\overrightarrow{OF}$=2$\overrightarrow{OE}$,
∴点O是直线AE的中点.
∵B,O,D三点共线,$\overrightarrow{AD}$=t$\overrightarrow{AC}$,∴点D是BO与AC的交点.
过点O作OM∥BC交AC于点M,则点M为AC的中点.
则OM=$\frac{1}{2}$EC=$\frac{1}{4}$BC,
∴$\frac{DM}{DC}$=$\frac{1}{4}$,
∴$DM=\frac{1}{3}MC$,
∴AD=$\frac{2}{3}$AM=$\frac{1}{3}$AC,$\overrightarrow{AD}$=t$\overrightarrow{AC}$,
∴t=$\frac{1}{3}$.
另解:由2$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,∴点O是直线AE的中点.
∵B,O,D三点共线,∴存在实数k使得$\overrightarrow{AO}$=k$\overrightarrow{AB}$+(1-k)$\overrightarrow{AD}$=k$\overrightarrow{AB}$+(1-k)t$\overrightarrow{AC}$=$\frac{1}{4}$$(\overrightarrow{AB}+\overrightarrow{AC})$,
∴k=$\frac{1}{4}$,(1-k)t=$\frac{1}{4}$,解得t=$\frac{1}{3}$.

故选:B.

点评 本题考查了向量三角形法则、平行线的性质定理、向量共线定理三角形中位线定理,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数y=$\frac{1}{{{2^{{x^2}+2x+2}}}}$.
(1)求函数的定义域和值域;
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题正确的是(  )
A.$a+\frac{1}{a}$的最小值是2B.${a^2}+\frac{1}{a^2}$的最小值是2
C.$a+\frac{1}{a}$的最大值是2D.${a^2}+\frac{1}{a^2}$的最大值是2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.数列{an}中,a1=1,an-an+1=anan+1,n∈N*
(1)求数列{an}的通项公式;
(2)Sn为{an}的前n项和,bn=S2n-Sn,求bn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.偶函数y=f(x)在区间[0,4]上单调递增,则有(  )
A.f(-1)>f($\frac{π}{3}$)>f(-π)B.f($\frac{π}{3}$)>f(-1)>f(-π)C.f(-π)>f($\frac{π}{3}$)>f(-1)D.f(-1)>f(-π)>f($\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在一次英语考试中,考试的成绩服从正态分布(100,36),那么考试成绩在区间(88,112]内的概率是(  )
A.0.6826B.0.3174C.0.9544D.0.9974

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3+bx2+cx-1当x=-2时有极值,且在x=-1处的切线的斜率为-3.
(1)求函数f(x)的解析式;
(2)求函数f(x)在区间[-1,2]上的最大值与最小值;
(3)若过点P(1,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}是无穷数列,满足lgan+1=|lgan-lgan-1|(n=2,3,4,…).
(Ⅰ)若a1=2,a2=3,求a3,a4,a5的值;
(Ⅱ)求证:“数列{an}中存在ak(k∈N*)使得lgak=0”是“数列{an}中有无数多项是1”的充要条件;
(Ⅲ)求证:在数列{an}中?ak(k∈N*),使得1≤ak<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\frac{1}{{e}^{|x|}}$•log3($\frac{1}{\sqrt{1+2{x}^{2}}+ax}$)图象关于原点对称.则实数a的值构成的集合为$±\sqrt{2}$.

查看答案和解析>>

同步练习册答案