精英家教网 > 高中数学 > 题目详情
10.数列{an}中,a1=1,an-an+1=anan+1,n∈N*
(1)求数列{an}的通项公式;
(2)Sn为{an}的前n项和,bn=S2n-Sn,求bn的最小值.

分析 (1)由a1=1,an-an+1=anan+1,n∈N*.可得$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}$=1,利用等差数列的通项公式即可得出.
(2)由(1)可得:bn=S2n-Sn=$\frac{1}{n+1}$$+\frac{1}{n+2}$+…+$\frac{1}{2n}$.再利用数列的单调性即可得出.

解答 解:(1)∵a1=1,an-an+1=anan+1,n∈N*.∴$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}$=1,
∴数列$\{\frac{1}{{a}_{n}}\}$是等差数列,公差为1,首项为1.
∴$\frac{1}{{a}_{n}}$=1+(n-1)=n,可得an=$\frac{1}{n}$.
(2)由(1)可得:Sn=1+$\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{n}$.
∴bn=S2n-Sn=$\frac{1}{n+1}$$+\frac{1}{n+2}$+…+$\frac{1}{2n}$.
∴bn+1-bn=$\frac{1}{n+2}+\frac{1}{n+3}$+…+$\frac{1}{2n}$+$\frac{1}{2n+1}$+$\frac{1}{2n+2}$-($\frac{1}{n+1}$$+\frac{1}{n+2}$+…+$\frac{1}{2n}$)
=$\frac{1}{2n+1}$+$\frac{1}{2n+2}$-$\frac{1}{n+1}$=$\frac{1}{2n+1}$-$\frac{1}{2n+2}$>0,
∴数列{bn}单调递增,∴bn的最小值为b1=$\frac{1}{2}$.

点评 本题考查了等差数列的通项公式与求和公式、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.若a>0,b>0,且$\frac{1}{a}$+$\frac{1}{b}$=$\sqrt{ab}$.
(1)求a2+b2的最小值;
(2)是否存在a,b,使得2a+3b=4?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆C:x2+(y-2)2=5,直线l:mx-y+1=0.
(1)求证:对m∈R,直线l与圆C总有两个不同交点;
(2)若圆C与直线l相交于A,B两点,求弦AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.从某中学高三年级中随机抽取了6名男生,其身高和体重的数据如表所示:
编号123456
身高/cm170168178168176172
体重/kg656472616767
由以上数据,建立了身高x预报体重y的回归方程$\hat y$=0.80x-71.6.那么,根据上述回归方程预报一名身高为175cm的高三男生的体重是(  )
A.80 kgB.71.6 kgC.68.4 kgD.64.8 kg

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.关于函数y=log3(x-1)的单调性,下列说法正确的是(  )
A.在(0,+∞)上是减函数B.在(0,+∞)上是增函数
C.在(1,+∞)上是减函数D.在(1,+∞)上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数定义域为D的函数f(x),如果对x∈D,存在正数k,有|f(x)|≤k|x|成立,则称函数f(x)是D上的“倍约束函数”,已知下列函数:(1)f(x)=2x; (2)f(x)=sin(x+$\frac{π}{4}$);(3)f(x)=$\sqrt{x-1}$;(4)f(x)=$\frac{x}{{x}^{2}+x+1}$;其中是“倍约束函数”的是(  )
A.(1)(3)(4)B.(1)(2)C.(3)(4)D.(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.O为△ABC内一点,且2$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,$\overrightarrow{AD}$=t$\overrightarrow{AC}$,若B,O,D三点共线,则t的值为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知圆G:x2+y2-2x-$\sqrt{2}$y=0经过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F及上顶点B,过椭圆外一点(m,0)(m>a)且倾斜角为$\frac{5}{6}$π的直线l交椭圆于C,D两点.
(I)求椭圆的方程;
(Ⅱ)若FC⊥FD,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=-x2+2x-5的单调递增区间是(  )
A.(-∞,0]B.[0,+∞)C.[1,+∞)D.(-∞,1]

查看答案和解析>>

同步练习册答案