分析 由题意,函数是奇函数,f(-x)+f(x)=0,结合对数的运算性质,即可得出结论.
解答 解:由题意,函数是奇函数,
∴f(-x)+f(x)=0,
∴$\frac{1}{{e}^{|-x|}}$•log3($\frac{1}{\sqrt{1+2{x}^{2}}-ax}$)+$\frac{1}{{e}^{|x|}}$•log3($\frac{1}{\sqrt{1+2{x}^{2}}+ax}$)=0,
∴log3($\frac{1}{1+2{x}^{2}-{a}^{2}{x}^{2}}$)=0,
∴1+2x2-a2x2=1,
∴a=$±\sqrt{2}$.
故答案为$±\sqrt{2}$.
点评 本题考查函数的奇偶性,考查对数的运算性质,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com