精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\frac{1}{{e}^{|x|}}$•log3($\frac{1}{\sqrt{1+2{x}^{2}}+ax}$)图象关于原点对称.则实数a的值构成的集合为$±\sqrt{2}$.

分析 由题意,函数是奇函数,f(-x)+f(x)=0,结合对数的运算性质,即可得出结论.

解答 解:由题意,函数是奇函数,
∴f(-x)+f(x)=0,
∴$\frac{1}{{e}^{|-x|}}$•log3($\frac{1}{\sqrt{1+2{x}^{2}}-ax}$)+$\frac{1}{{e}^{|x|}}$•log3($\frac{1}{\sqrt{1+2{x}^{2}}+ax}$)=0,
∴log3($\frac{1}{1+2{x}^{2}-{a}^{2}{x}^{2}}$)=0,
∴1+2x2-a2x2=1,
∴a=$±\sqrt{2}$.
故答案为$±\sqrt{2}$.

点评 本题考查函数的奇偶性,考查对数的运算性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.O为△ABC内一点,且2$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,$\overrightarrow{AD}$=t$\overrightarrow{AC}$,若B,O,D三点共线,则t的值为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=ax3-3x2+1(a>0),定义h(x)=max{f(x),g(x)}=$\left\{{\begin{array}{l}{f(x),f(x)≥g(x)}\\{g(x),f(x)<g(x)}\end{array}}$.
(1)求函数f(x)的极值;
(2)若g(x)=xf'(x),且存在x∈[1,2]使h(x)=f(x),求实数a的取值范围;
(3)若g(x)=lnx,试讨论函数h(x)(x>0)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=-x2+2x-5的单调递增区间是(  )
A.(-∞,0]B.[0,+∞)C.[1,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|x2-2x-3|-a分别满足下列条件,求实数a的取值范围.
(1)函数有两个零点;
(2)函数有三个零点;
(3)函数有四个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(x)<f(3)的x的取值范围是(-3,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,⊙O的直径为6,AB为⊙O的直径,C为圆周上一点,BC=3,过C作圆的
切线l,过A作l的垂线AD,AD分别与直线l、圆交于D、E.
(1)求∠DAC的度数;
(2)求线段AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合A={1,3,x2},B={x+2,1},若B⊆A,求实数x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,P为BC中点,若$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,则m+n=1.

查看答案和解析>>

同步练习册答案