| A. | 最大值-2 | B. | 最小值-2 | C. | 最大值2$\sqrt{3}$ | D. | 最小值2$\sqrt{3}$ |
分析 可先画出图形,根据BC=2,A=60°,对$\overrightarrow{CB}=\overrightarrow{CA}+\overrightarrow{AB}$两边平方,进行数量积的运算即可得到$4=|\overrightarrow{CA}{|}^{2}+|\overrightarrow{AB}{|}^{2}-|\overrightarrow{CA}||\overrightarrow{AB}|$,从而得出$|\overrightarrow{CA}||\overrightarrow{AB}|≤4$,这样便可求出$\overrightarrow{AB}•\overrightarrow{CA}≥-2$,从而得出正确选项.
解答 解:如图,
$\overrightarrow{CB}=\overrightarrow{CA}+\overrightarrow{AB}$;
∴${\overrightarrow{CB}}^{2}={\overrightarrow{CA}}^{2}+{\overrightarrow{AB}}^{2}+2\overrightarrow{CA}•\overrightarrow{AB}$,且BC=2,A=60°;
∴$4=|\overrightarrow{CA}{|}^{2}+|\overrightarrow{AB}{|}^{2}-|\overrightarrow{CA}||\overrightarrow{AB}|$$≥2|\overrightarrow{CA}||\overrightarrow{AB}|-|\overrightarrow{CA}||\overrightarrow{AB}|=|\overrightarrow{CA}||\overrightarrow{AB}|$;
即$|\overrightarrow{CA}||\overrightarrow{AB}|≤4$;
∴$\overrightarrow{AB}•\overrightarrow{CA}=-\frac{1}{2}|\overrightarrow{AB}||\overrightarrow{CA}|≥-2$;
∴$\overrightarrow{AB}•\overrightarrow{CA}$有最小值-2.
故选B.
点评 考查向量加法的几何意义,向量数量积的运算及计算公式,不等式a2+b2≥2ab的运用,以及不等式的性质.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{204}$ | B. | $\frac{45}{68}$ | C. | $\frac{15}{68}$ | D. | $\frac{5}{68}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{3}{8}$ | C. | $\frac{7}{8}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com