| A. | $\frac{1}{8}$ | B. | $\frac{3}{8}$ | C. | $\frac{7}{8}$ | D. | $\frac{1}{4}$ |
分析 根据查询框图转化为几何概型进行计算即可.
解答 解:程序框图对应的不等式组为$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$,
则“恭喜中奖!满足条件为y≥x+$\frac{1}{2}$,
作出不等式组对应的平面区域如图:![]()
则正方形的面积S=1×1=1,
D(0,$\frac{1}{2}$),E($\frac{1}{2}$,1),
则△ADE的面积S=$\frac{1}{2}$×$\frac{1}{2}$×$\frac{1}{2}$=$\frac{1}{8}$,
则能输出“恭喜中奖!”的概率为$\frac{1}{8}$,
故选:A
点评 本题主要考查几何概型的概率的计算,根据程序框图转化为几何概型是解决本题的关键.
科目:高中数学 来源: 题型:解答题
| | (0,2] | (2,3] | (3,4] | (4,5] |
| 甲 | $\frac{1}{2}$ | x | x | x |
| 乙 | $\frac{1}{6}$ | $\frac{1}{3}$ | y | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 最大值-2 | B. | 最小值-2 | C. | 最大值2$\sqrt{3}$ | D. | 最小值2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{27}$=1 | B. | $\frac{4{x}^{2}}{9}$+y2=1 | C. | $\frac{9{x}^{2}}{4}$+3y2=1 | D. | x2+$\frac{4{y}^{2}}{3}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充要条件 | B. | 充分不必要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com