精英家教网 > 高中数学 > 题目详情

已知数列-1,,-,…,试归纳出该数列的一个通项公式是________.

答案:
解析:

  答案:

  


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an+1}满足an+1=2an-1且n,数列{bn}的前n项和为Sn
(1)求数列{an}的通项an; (2)求Sn
(3)设f(x)=(x-2n+1)ln(x-2n+1)-x(n∈N*),求证:f(x)≥
3Sn+26Sn-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{
anpn-1
}
的前n项和Sn=n2+2n(其中常数p>0),数列{an}的前n项和为Tn
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求Tn的表达式;
(Ⅲ)若对任意n∈N*,都有(1-p)Tn+pan≥2pn恒成立,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{2an-1}是公比为3的等比数列,且a1=1,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}的前n项和Sn满足Sn=2n2+2n-2,且cn=(an-
12
)•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{2n-1•an}的前n项和Sn=9-6n.
(1)求数列{an}的通项公式;
(2)设bn=n(3-log2
|an|
3
),设数列{
1
bn
}的前n项和为Tn,是否存在最大的整数m,使得对任意n∈N*均有Tn
m
27
成立.若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{2n-1•an}的前n项和Sn=9-6n
(1)求数列{an}的通项公式.
(2)设bn=n(3-log2
|an|
3
)
,求数列{
1
bn
}
的前n项和.

查看答案和解析>>

同步练习册答案