精英家教网 > 高中数学 > 题目详情
设A(x1,y1),B(x2,y2)是函数f(x)=
1
2
+log2
x
1-x
图象上任意两点,且
OM
=
1
2
(
OA
+
OB
)
,已知点M的横坐标为
1
2

(1)求点M的纵坐标;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,
①求Sn
②已知
1
12
,其中n∈N*,Tn为数列{an}的前n项和,若Tn≤λ(Sn+1+1)对一切n∈N*都成立,试求λ的最小正整数值.
(1)依题意由
OM
=
1
2
(
OA
+
OB
)
知M为线段AB的中点.
又∵M的横坐标为
1
2
,A(x1,y1),B(x2,y2)即
x1+x2
2
=
1
2
?x1+x2=1

y1+y2=1+log2(
x1
1-x1
x2
1-x2
)=1+log21=1?
y1+y2
2
=
1
2

即M点的纵坐标为定值
1
2

 (2)①由(Ⅰ)可知f(x)+f(1-x)=1,
又∵n≥2时Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)

Sn=f(
n-1
n
)+f(
n-2
n
)+••+f(
1
n
)

两式想加得,2Sn=n-1
Sn=
n-1
2

②当n≥2时,an=
1
(Sn+1)(Sn+1+1) 
=
4
(n+1)(n+2)
=4(
1
n+1
-
1
n+2

又n=1时,a1=
2
3
也适合.
∴an=4(
1
n+1
-
1
n+2
)                                                                                     
Tn=
4
2×3
+
4
3×4
++
4
(n+1)(n+2)
=4(
1
2
-
1
3
+
1
3
-
1
4
++
1
n+1
-
1
n+2
)
=4(
1
2
-
1
n+2
)=
2n
n+2
(n∈N*)

2n
n+2
≤λ(
n
2
+1)
恒成立(n∈N*)?λ≥
4n
n2+4n+4

4n
n2+4n+4
=
4
n+
4
n
+4
4
4+4
=
1
2
(当且仅当n=2取等号)
λ≥
1
2
,∴λ的最小正整数为1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:x2=4y的焦点为F,直线l过点F交抛物线C于A、B两点.
(Ⅰ)设A(x1,y1),B(x2,y2),求
1
y1
+
1
y2
的取值范围;
(Ⅱ)是否存在定点Q,使得无论AB怎样运动都有∠AQF=∠BQF?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,y1),B(x2,y2)是函数f(x)=
1
2
+log2
x
1-x
的图象上两点,且
OM
=
1
2
(
OA
+
OB
)
,O为坐标原点,已知点M的横坐标为
1
2

(Ⅰ)求证:点M的纵坐标为定值;
(Ⅱ)定义定义Sn=
n-1
i=1
f(
i
n
)=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求S2011
(Ⅲ)对于(Ⅱ)中的Sn,设an=
1
2Sn+1
(n∈N*)
.若对于任意n∈N*,不等式kan3-3an2+1>0恒成立,试求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,y1),B(x2,y2)是椭圆
y2
a2
+
x2
b2
=1(a>b>0)
上的两点,已知O为坐标原点,椭圆的离心率e=
3
2
,短轴长为2,且
m
=(
x1
b
y1
a
),
n
=(
x2
b
y2
a
)
,若
m
n
=0

(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c)(c为半焦距),求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,y1),B(x2,y2)是函数f(x)=
1
2
+log2
x
1-x
图象上任意两点,且
OM
=
1
2
OA
+
OB
),已知点M的横坐标为
1
2
,且有Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
),其中n∈N*且n≥2,
(1)求点M的纵坐标值;
(2)求s2,s3,s4及Sn
(3)已知an=
1
(Sn+1)(Sn+1+1)
,其中n∈N*,且Tn为数列{an}的前n项和,若Tn≤λ(Sn+1+1)对一切n∈N*都成立,试求λ的最小正整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,y1)、B(x2,y2)、C(x3,y3)是抛物线y=x2上的三个动点,其中x3>x2≥0,△ABC是以B为直角顶点的等腰直角三角形.
(1)求证:直线BC的斜率等于x2+x3,也等于
x2-x1x3-x2

(2)求A、C两点之间距离的最小值.

查看答案和解析>>

同步练习册答案