精英家教网 > 高中数学 > 题目详情
某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据
x
6
8
10
12
y
2
3
5
6
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程 
(2)试根据已求出的线性回归方程,预测记忆力为9的同学的判断力.
(1)线性回归方程为;(2)记忆力为9的同学的判断力约为4.

试题分析:(1)用最小二乘法公式求出即可;(2)把代入即可.
(1)=62+83+105+126=158,
==


故线性回归方程为.         8分
(2)解:由回归方程预测,记忆力为9的同学的判断力约为4. 10分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

为调查某市老年人是否需要志愿者提供帮助,用简单随机抽样方法从该市调查了500位老年人,结果如右表.
性别
是否需要志愿者


需要
40
30
不需要
160
270
 
(1)估计该市老年人中, 需要志愿者提供帮助的老年人的比例;
(2)能否有99%的把握认为该市的老年人是否需要志愿者提供帮助与性别有关?
附:(

0.050
0.010
0.001

3.841
6.635
10.828
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了解某校学生参加某项测试的情况,从该校学生中随机抽取了6位同学,这6位同学的成绩(分数)如茎叶图所示.

⑴求这6位同学成绩的平均数和标准差;
⑵从这6位同学中随机选出两位同学来分析成绩的分布情况,设为这两位同学中成绩低于平均分的人数,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

通过随机调查110名性别不同的学生是否爱好某项运动,得到如下的列联表:
A.有99%以上的把握认为“爱好该项运动与性别有关”
B.有99%以上的把握认为“爱好该项运动与性别无关”
C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.
根据收集到的数据(如下表),由最小二乘法求得回归方程
零件数x(个)
10
20
30
40
50
加工时间y(min)
62
m
n
81
89
 
则m+n的值为:
A.137    B.129    C.121     D.118

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某校为了解高一期末数学考试的情况,从高一的所有学生数学试卷中随机抽取份试卷进行成绩分析,得到数学成绩频率分布直方图(如图所示),其中成绩在的学生人数为6.
(1)估计所抽取的数学成绩的众数;
(2)用分层抽样的方法在成绩为这两组中共抽取5个学生,并从这5个学生中任取2人进行点评,求分数在恰有1人的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

甲、乙两名同学在5次数学考试中,成绩统计用茎叶图表示如图所示,若甲、乙两人的平均成绩分别用表示,则下列结论正确的是(  )
A.,且甲比乙成绩稳定B.,且乙比甲成绩稳定
C.,且甲比乙成绩稳定D.,且乙比甲成绩稳定

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某学校为调查高一新生上学路程所需要的时间(单位:分钟),从高一年级新生中随机抽取100名新生按上学所需时间分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(1)根据图中数据求的值
(2)若从第3,4,5组中用分层抽样的方法抽取6名新生参与交通安全问卷调查,应从第3,4,5组
各抽取多少名新生?
(3)在(2)的条件下,该校决定从这6名新生中随机抽取2名新生参加交通安全宣传活动,求第4组至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了调查某厂2000名工人生产某种产品的能力,随机抽查了位工人某天生产该产品的数量,产品数量的分组区间为,得到如题(16)图所示的频率分布直方图。已知生产的产品数量在之间的工人有6位.
(1)求
(2)工厂规定从生产低于20件产品的工人中随机的选取2位工人进行培训,求这2位工人不在同一组的概率.

查看答案和解析>>

同步练习册答案