ÎÒÃǸø³öÈç϶¨Ò壺¶Ôº¯Êýy=f£¨x£©£¬x¡ÊD£¬Èô´æÔÚ³£ÊýC£¨C¡ÊR£©£¬¶ÔÈÎÒâµÄx1¡ÊD£¬´æÔÚΨһµÄx2¡ÊD£¬Ê¹µÃ
f(x1)+f(x2)
2
=C
£¬Ôò³Æº¯Êýf£¨x£©Îª¡°ºÍгº¯Êý¡±£¬³Æ³£ÊýCΪº¯Êýf£¨x£©µÄ¡°ºÍгÊý¡±£®
£¨1£©ÅжϺ¯Êýf£¨x£©=x+1£¬x¡Ê[-1£¬3]ÊÇ·ñΪ¡°ºÍгº¯Êý¡±£¿´ð£º______£®£¨Ìî¡°ÊÇ¡±»ò¡°·ñ¡±£©Èç¹ûÊÇ£¬Ð´³öËüµÄÒ»¸ö¡°ºÍгÊý¡±£º______£®£¨4·Ö£©
£¨2£©Ö¤Ã÷£ºº¯Êýg£¨x£©=lgx£¬x¡Ê[10£¬100]Ϊ¡°ºÍгº¯Êý¡±£¬
3
2
ÊÇÆä¡°ºÍгÊý¡±£»
£¨3£©ÅжϺ¯Êýu£¨x£©=x2£¬x¡ÊRÊÇ·ñΪºÍгº¯Êý£¬²¢×÷³öÖ¤Ã÷£®
£¨1£©¡ß¶ÔÈÎÒâx1¡Ê[-1£¬3]£¬Áî
f(x1)+f(x2)
2
=2
£¬µÃx2=2-x1£¬¡àx2¡Ê[-1£¬3]£¬¼´¶ÔÈÎÒâµÄx1¡Ê[-1£¬3]£¬´æÔÚΨһµÄx2=2-x1¡Ê[-1£¬3]£¬Ê¹µÃ
f(x1)+f(x2)
2
=2
£¬
¹ÊÕýÈ·´ð°¸Îª  ÊÇ£»  2
£¨2£©Ö¤Ã÷£º¢Ù¶ÔÈÎÒâx1¡Ê[10£¬100]£¬Áî
g(x1)+g(x2)
2
=
3
2
£¬¼´
lgx1+lgx2
2
=
3
2
£¬
µÃx2=
1000
x1
£®¡ßx1¡Ê[10£¬100]£¬¡àx2=
1000
x1
¡Ê[10£¬100]
£®
¼´¶ÔÈÎÒâx1¡Ê[10£¬100]£¬´æÔÚΨһµÄx2=
1000
x1
¡Ê[10£¬100]
£¬Ê¹µÃ
g(x)+g(x2)
2
=
3
2
£®
¡àg£¨x£©=lgxΪ¡°ºÍгº¯Êý¡±£¬Æä¡°ºÍгÊý¡±Îª
3
2
£®
²ÎÕÕÉÏÊöÖ¤Ã÷¹ý³ÌÖ¤Ã÷£ºº¯Êýh£¨x£©=2x£¬x¡Ê£¨1£¬3£©Îª¡°ºÍгº¯Êý¡±£¬5ÊÇÆä¡°ºÍгÊý¡±£»
¢Ú¶ÔÈÎÒâx1¡Ê£¨1£¬3£©£¬Áî
h(x1)+h(x2)
2
=5
£¬¼´
2x1+2x2
2
=5
£¬µÃ2x2=10-2x1£¬x2=log2(10-2x1)£®¡ßx1¡Ê£¨1£¬3£©£¬¡à10-2x1¡Ê(2£¬8)£¬x2=log2(10-2x1)¡Ê(1£¬3)£®
¼´¶ÔÈÎÒâx1¡Ê£¨1£¬3£©£¬´æÔÚΨһµÄx2=log2(10-2x1)¡Ê(1£¬3)£¬Ê¹µÃ
h(x1)+h(x2)
2
=5
£®
¡àh£¨x£©=2x£¬x¡Ê£¨1£¬3£©Îª¡°ºÍгº¯Êý¡±£¬5ÊÇÆä¡°ºÍгÊý¡±
£¨3£©º¯Êýu£¨x£©=x2£¬x¡ÊR²»ÊÇ¡°ºÍгº¯Êý¡±£¬Ö¤Ã÷ÈçÏ£º
¶ÔÈÎÒâµÄ³£ÊýC£¬¢ÙÈôC¡Ü0£¬Ôò¶ÔÓÚx1=1£¬ÏÔÈ»²»´æÔÚx2¡ÊR£¬Ê¹µÃ
x12+x22
2
=
1+x22
2
=C
³ÉÁ¢£¬
ËùÒÔC£¨C¡Ü0£©²»ÊǺ¯Êýu£¨x£©=x2£¬x¡ÊRµÄºÍгÊý£»
¢ÚÈôC£¾0£¬Ôò¶ÔÓÚx1=
4C
£¬ÓÉ
x12+x22
2
=
4C+x22
2
=C
µÃ£¬x22=-2C£¼0£¬
¼´²»´æÔÚx2¡ÊR£¬Ê¹
x12+x22
2
=C
³ÉÁ¢£®ËùÒÔC£¨C£¾0£©Ò²²»ÊǺ¯Êýu£¨x£©=x2£¬x¡ÊRµÄºÍгÊý£®
×ÛÉÏËùÊö£¬º¯Êýu£¨x£©=x2£¬x¡ÊR²»ÊÇ¡°ºÍгº¯Êý¡±£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÎÒÃǸø³öÈç϶¨Ò壺¶Ôº¯Êýy=f£¨x£©£¬x¡ÊD£¬Èô´æÔÚ³£ÊýC£¨C¡ÊR£©£¬¶ÔÈÎÒâµÄx1¡ÊD£¬´æÔÚΨһµÄx2¡ÊD£¬Ê¹µÃ
f(x1)+f(x2)
2
=C
£¬Ôò³Æº¯Êýf£¨x£©Îª¡°ºÍгº¯Êý¡±£¬³Æ³£ÊýCΪº¯Êýf£¨x£©µÄ¡°ºÍгÊý¡±£®
£¨1£©ÅжϺ¯Êýf£¨x£©=x+1£¬x¡Ê[-1£¬3]ÊÇ·ñΪ¡°ºÍгº¯Êý¡±£¿´ð£º
ÊÇ
ÊÇ
£®£¨Ìî¡°ÊÇ¡±»ò¡°·ñ¡±£©Èç¹ûÊÇ£¬Ð´³öËüµÄÒ»¸ö¡°ºÍгÊý¡±£º
2
2
£®
£¨2£©ÇëÏÈѧϰÏÂÃæµÄÖ¤Ã÷·½·¨£º
Ö¤Ã÷£ºº¯Êýg£¨x£©=lgx£¬x¡Ê[10£¬100]Ϊ¡°ºÍгº¯Êý¡±£¬
3
2
ÊÇÆä¡°ºÍгÊý¡±£®
Ö¤Ã÷¹ý³ÌÈçÏ£º¶ÔÈÎÒâx1¡Ê[10£¬100]£¬Áî
g(x1)+g(x2)
2
=
3
2
£¬¼´
lgx1+lgx2
2
=
3
2
£¬
µÃx2=
1000
x1
£®¡ßx1¡Ê[10£¬100]£¬¡àx2=
1000
x1
¡Ê[10£¬100]
£®¼´¶ÔÈÎÒâx1¡Ê[10£¬100]£¬´æÔÚΨһµÄx2=
1000
x1
¡Ê[10£¬100]
£¬Ê¹µÃ
g(x)+g(x2)
2
=
3
2
£®¡àg£¨x£©=lgxΪ¡°ºÍгº¯Êý¡±£¬
3
2
ÊÇÆä¡°ºÍгÊý¡±£®
²ÎÕÕÉÏÊöÖ¤Ã÷¹ý³ÌÖ¤Ã÷£ºº¯Êýh£¨x£©=2x£¬x¡Ê£¨1£¬3£©Îª¡°ºÍгº¯Êý¡±£»
£¨3£©Ð´³öÒ»¸ö²»ÊÇ¡°ºÍгº¯Êý¡±µÄº¯Êý£¬²¢×÷³öÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÎÒÃǸø³öÈç϶¨Ò壺¶Ôº¯Êýy=f£¨x£©£¬x¡ÊD£¬Èô´æÔÚ³£ÊýC£¨C¡ÊR£©£¬¶ÔÈÎÒâµÄx1¡ÊD£¬´æÔÚΨһµÄx2¡ÊD£¬Ê¹µÃ
f(x1)+f(x2)
2
=C
£¬Ôò³Æº¯Êýf£¨x£©Îª¡°ºÍгº¯Êý¡±£¬³Æ³£ÊýCΪº¯Êýf£¨x£©µÄ¡°ºÍгÊý¡±£®
£¨1£©ÅжϺ¯Êýf£¨x£©=x+1£¬x¡Ê[-1£¬3]ÊÇ·ñΪ¡°ºÍгº¯Êý¡±£¿´ð£º
 
£®£¨Ìî¡°ÊÇ¡±»ò¡°·ñ¡±£©Èç¹ûÊÇ£¬Ð´³öËüµÄÒ»¸ö¡°ºÍгÊý¡±£º
 
£®£¨4·Ö£©
£¨2£©Ö¤Ã÷£ºº¯Êýg£¨x£©=lgx£¬x¡Ê[10£¬100]Ϊ¡°ºÍгº¯Êý¡±£¬
3
2
ÊÇÆä¡°ºÍгÊý¡±£»
£¨3£©ÅжϺ¯Êýu£¨x£©=x2£¬x¡ÊRÊÇ·ñΪºÍгº¯Êý£¬²¢×÷³öÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2008•ÉϺ£Ò»Ä££©ÔÚͳ¼ÆѧÖУ¬ÎÒÃÇѧϰ¹ý·½²îµÄ¸ÅÄÆä¼ÆË㹫ʽΪ
¦Ò
2
 
=
1
N
[(x1-¦Ì)2+(x2-¦Ì)2+¡­+(xn-¦Ì)2]
£¬²¢ÇÒÖªµÀ£¬ÆäÖЦÌ=
1
N
(x1+x2+¡­+xn)
Ϊx1¡¢x2¡¢¡­¡¢xnµÄƽ¾ùÖµ£®
ÀàËƵأ¬ÏÖ¶¨Òå¡°¾ø¶Ô²î¡±µÄ¸ÅÄîÈçÏ£ºÉèÓÐn¸öʵÊýx1¡¢x2¡¢¡­¡¢xn£¬³Æº¯Êýg£¨x£©=|x-x1|+|x-x2|+¡­+|x-xn|Ϊ´Ën¸öʵÊýµÄ¾ø¶Ô²î£®
£¨1£©ÉèÓк¯Êýg£¨x£©=|x+1|+|x-1|+|x-2|£¬ÊÔÎʵ±xΪºÎֵʱ£¬º¯Êýg£¨x£©È¡µ½×îСֵ£¬²¢Çó×îСֵ£»
£¨2£©ÉèÓк¯Êýg£¨x£©=|x-x1|+|x-x2|+¡­+|x-x2|£¬£¨x¡ÊR£¬x1£¼x2£¼¡­£¼xn¡ÊR£©£¬
ÊÔÎÊ£ºµ±xΪºÎֵʱ£¬º¯Êýg£¨x£©È¡µ½×îСֵ£¬²¢Çó×îСֵ£»
£¨3£©Èô¶Ô¸÷Ïî¾ø¶ÔֵǰµÄϵÊý½øÐб仯£¬ÊÔÇóº¯Êýf£¨x£©=3|x+3|+2|x-1|-4|x-5|£¨x¡ÊR£©µÄ×îÖµ£»
£¨4£©ÊÜ£¨3£©µÄÆô·¢£¬ÊÔ¶Ô£¨2£©×÷Ò»¸öÍƹ㣬¸ø³ö¡°¼ÓȨ¾ø¶Ô²î¡±µÄ¶¨Ò壬²¢ÌÖÂ۸ú¯ÊýµÄ×îÖµ£¨Ð´³ö½á¹û¼´¿É£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2008£­2009ѧÄê¸ßÈýÊýѧģÄâÊÔÌâ·ÖÀà»ã±à£ºº¯Êý ÌâÐÍ£º044

ÔÚͳ¼ÆѧÖУ¬ÎÒÃÇѧϰ¹ý·½²îµÄ¸ÅÄÆä¼ÆË㹫ʽΪ£¬

²¢ÇÒÖªµÀ£¬ÆäÖÐΪx1¡¢x2¡¢¡­¡¢xnµÄƽ¾ùÖµ£®

ÀàËƵأ¬ÏÖ¶¨Òå¡°¾ø¶Ô²î¡±µÄ¸ÅÄîÈçÏ£ºÉèÓÐn¸öʵÊýx1¡¢x2¡¢¡­¡¢xn£¬³Æº¯Êýg(x)£½|x£­x1|£«|x£­x2|£«¡­£«|x£­xn|Ϊ´Ën¸öʵÊýµÄ¾ø¶Ô²î£®

(1)ÉèÓк¯Êýg(x)£½|x£«1|£«|x£­1|£«|x£­2|£¬ÊÔÎʵ±xΪºÎֵʱ£¬º¯Êýg(x)È¡µ½×îСֵ£¬²¢Çó×îСֵ£»

(2)ÉèÓк¯Êýg(x)£½|x£­x1|£«|x£­x2|£«¡­£«|x£«x2|£¬(x¡ÊR£¬x1£¼x2£¼¡­£¼xn¡ÊR)£¬

ÊÔÎÊ£ºµ±xΪºÎֵʱ£¬º¯Êýg(x)È¡µ½×îСֵ£¬²¢Çó×îСֵ£»

(3)Èô¶Ô¸÷Ïî¾ø¶ÔֵǰµÄϵÊý½øÐб仯£¬ÊÔÇóº¯Êýf(x)£½3|x£«3|£«2|x£­1|£­4|x£­5|(x¡ÊR)µÄ×îÖµ£»

(4)ÊÜ(3)µÄÆô·¢£¬ÊÔ¶Ô(2)×÷Ò»¸öÍƹ㣬¸ø³ö¡°¼ÓȨ¾ø¶Ô²î¡±µÄ¶¨Ò壬²¢ÌÖÂ۸ú¯ÊýµÄ×îÖµ(д³ö½á¹û¼´¿É)£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸