精英家教网 > 高中数学 > 题目详情
4.在平面直角坐标系中,A(a,0),D(0,b),a≠0,C(0,-2),∠CAB=90°,D是AB的中点,当A在x轴上移动时,a与b满足的关系式为a2=2b;点B的轨迹E的方程为y=x2(x≠0).

分析 求出AC和AB的斜率,根据∠CAB=90°得出斜率之间的关系,列方程即可得出答案.

解答 解:∵∠CAB=90°,∴kAC•kAB=-1,
又kAC=$\frac{2}{a}$,kAB=kAD=$\frac{b}{-a}$,
∴-$\frac{2b}{{a}^{2}}$=-1,即a2=2b.
设B(x,y),∵D是AB的中点,
∴x=-a,y=2b,
∵a2=2b,∴x2=y,
∴B点轨迹方程为y=x2(x≠0).
故答案为a2=2b,y=x2(x≠0).

点评 本题考查了轨迹方程的求解,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.下列说法错误的是(  )
A.回归直线过样本点的中心($\overline{x}$,$\overline{y}$)
B.两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1
C.在回归直线方程$\stackrel{∧}{y}$=0.2x+0.8中,当解释变量x每增加1个单位时,预报变量$\stackrel{∧}{y}$平均增加0.2个单位
D.对分类变量X与Y,随机变量K2的观测值k越大,则判断“X与Y有关系”的把握程度越小

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.平面直角坐标系中,在由x轴、$x=\frac{π}{3}$、x=$\frac{5π}{3}$和y=2所围成的矩形中任取一点,满足不等关系y≤1-sin3x的概率是(  )
A.$\frac{4π}{3}$B.$\frac{π}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在三棱锥A-BCD中,侧面ABD⊥底面BCD,BC⊥CD,AB=AD=4,BC=6,BD=4$\sqrt{3}$,该三棱锥三视图的正视图为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“函数f(x)=a+lnx(x≥e)存在零点”是“a<-1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分不用必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在梯形ABCD中,AB∥CD,AD=CD=CB=a,∠ABC=60°,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=a,点M在线段EF上,且MF=2EM.
(1)求证:AM∥平面BDF;
(2)求直线AM与平面BEF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知实数x,y满足不等式组$\left\{\begin{array}{l}{0≤x≤2}\\{x+y-2≥0}\\{x-y+2≥0}\end{array}\right.$,则目标函数z=3x-4y的最小值m与最大值M的积为-60.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.数列{an}满足:a1=2,a2=3,an+2=3an+1-2an(n∈N*).
(1)记dn=an+1-an,求证:数列{dn}是等比数列;
(2)若数列$\{\frac{1}{a_n}\}$的前n项和为Sn,证明${S_n}<\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,α为l的倾斜角),曲线C的极坐标方程为ρ2-6ρcosθ+5=0
(1)若直线l与曲线C相切,求α的值;
(2)设曲线C上任意一点为P(x,y),求x+y的取值范围.

查看答案和解析>>

同步练习册答案