精英家教网 > 高中数学 > 题目详情
19.“函数f(x)=a+lnx(x≥e)存在零点”是“a<-1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分不用必要条件

分析 求出函数f(x)=a+lnx(x≥e)存在零点时a的范围,根据集合的包含关系判断即可.

解答 解:令f(x)=0,解得:a=-lnx,
而lnx≥1,故a≤-1,
故a≤-1是a<-1的必要不充分条件,
故选:B.

点评 本题考查了充分必要条件,考查集合的包含关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知过抛物线y2=2px(p>0)的焦点F的直线与抛物线交于A,B两点,且$\overrightarrow{AF}$=3$\overrightarrow{FB}$,抛物线的准线l与x轴交于点C,AA1⊥l于点A1,若四边形AA1CF的面积为12$\sqrt{3}$,则准线l的方程为(  )
A.x=-$\sqrt{2}$B.x=-2$\sqrt{2}$C.x=-2D.x=-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x-1|+|x+a|
(Ⅰ)当a=3时,解关于x的不等式|x-1|+|x+a|>6
(Ⅱ)若函数g(x)=f(x)-|3+a|存在零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(3,-4),当k为何值时
(1)k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$共线.
(2)k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知集合A={x|x(3-x)>0},集合B={y|y=2x+2},则A∩B={x|2<x<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系中,A(a,0),D(0,b),a≠0,C(0,-2),∠CAB=90°,D是AB的中点,当A在x轴上移动时,a与b满足的关系式为a2=2b;点B的轨迹E的方程为y=x2(x≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,过椭圆M:$\frac{{x}^{2}}{2}$+y2=1的右焦点F作直线交椭圆于A,C两点.
(1)当A,C变化时,在x轴上求点Q,使得∠AQF=∠CQF;
(2)当直线QA交椭圆M的另一交点为B,连接BF并延长交椭圆于点D,当四边形ABCD的面积取得最大值时,求直线AC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知点P(0,3),抛物线C:y2=4x的焦点为F,射线FP与抛物线c相交于点A,与其准线相交于点B,则|AF|:|AB|=(  )
A.$3:\sqrt{10}$B.$1:\sqrt{10}$C.1:2D.1:3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在直四棱柱ABCD-A1B1C1D1中,底面ABCD是边长为1的正方形,AA1=2,M、N分别是A1B1、A1D1中点,则BM与AN所成的角的余弦值为(  )
A.$\frac{15}{17}$B.$\frac{16}{17}$C.$\frac{5}{13}$D.$\frac{12}{13}$

查看答案和解析>>

同步练习册答案