精英家教网 > 高中数学 > 题目详情
如图,已知OPQ是半径为1,圆心角为的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形.记∠COP=α,求当角α取何值时,矩形ABCD的面积最大?并求出这个最大面积.
【答案】分析:如图先用所给的角将矩形的面积表示出来,建立三角函数模型,再根据所建立的模型利用三角函数的性质求最值.
解答:解:如图,在Rt△OBC中,OB=cosα,BC=sinα,
在Rt△OAD中,=tan60°=,所以OA=DA=BC=sinα.
所以AB=OB-OA=cosαsinα.
设矩形ABCD的面积为S,则S=AB•BC=(cosαsinα)sinα=sinαcosαsin2α
=sin2α+cos2α-=sin2α+cos2α)-
=sin(2α+
由于0<α<,所以当2α+=,即α=时,S最大=-=
因此,当α=时,矩形ABCD的面积最大,最大面积为
点评:本题考查在实际问题中建立三角函数模型,求解问题的关键是根据图形建立起三角模型,将三角模型用所学的恒等式变换公式进行化简.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知OPQ是半径为1,圆心角为
π3
的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形.记∠COP=α,求当角α取何值时,矩形ABCD的面积最大?并求出这个最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知OPQ是半径为1,圆心角为60°的扇形,∠POQ的平分线交弧PQ于点E,扇形POQ的内接矩形ABCD关于OE对称;设∠POB=α,矩形ABCD的面积为S.
(1)求S与α的函数关系f(α);
(2)求S=f(α)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知OPQ是半径为为1,圆心角为
π3
的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形.记∠COP=α,矩形ABCD的面积为S.
(1)请找出S与α之间的函数关系(以α为自变量);
(2)求当α为何值时,矩形ABCD的面积最大?并求出这个最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知OPQ是半径为1,圆心角为数学公式的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形.记∠COP=α,求当角α取何值时,矩形ABCD的面积最大?并求出这个最大面积.

查看答案和解析>>

同步练习册答案