精英家教网 > 高中数学 > 题目详情
18.若3cosα+4sinα=5,则tanα=$\frac{4}{3}$.

分析 由条件可得cosα=$\frac{5-4sinα}{3}$,平方化简可得25sin2α-40sinα+16=0,求得sinα 的值,可得cosα的值,从而求得tanα的值.

解答 解:由于3cosα+4sinα=5,
∴cosα=$\frac{5-4sinα}{3}$,平方可得9cos2α=25-40sinα+16sin2α.
化简可得:25sin2α-40sinα+16=0.
∴sinα=$\frac{4}{5}$.
再把sinα=$\frac{4}{5}$代入3cosα+4sinα=5,可得cosα=$\frac{3}{5}$,
∴tanα=$\frac{sinα}{cosα}$=$\frac{4}{3}$.
故答案为:$\frac{4}{3}$.

点评 本题主要考查同角三角函数的基本关系的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设数列{an}的前n项和为Sn,且对n∈N*都有Sn=2an+n-4
(1)求证:数列{an-1}是等比数列,并求数列{an}的通项公式;
(2)数列{bn} 满足bn=$\frac{1}{(n+1)lo{g}_{2}({a}_{n}-1)}$,(n∈N*)求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\overrightarrow a=(-3,2,5),\overrightarrow b=(1,5,-1),则\overrightarrow a•\overrightarrow b$=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.我国是世界上人口最多的国家,1982年十二大,计划生育被确定为基本国策.实行计划生育,严格控制人口增长,坚持少生优生,这是直接关系到人民生活水平的进一步提高,也是造福子孙后代的百年大计.
(1)据统计1995年底,我国人口总数约12亿,如果人口的自然年增长率控制在1%,到2020年底我国人口总数大约为多少亿(精确到亿)?
(2)当前,我国人口发展已经出现转折性变化.2015年10月26日至10月29日召开的党的十八届五中于全会决定,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子政策,积极开展应对人口老龄化行动.这是继2013年,十八届三中全会决定启动实施“单独二孩”政策之后的又一次人口政策调整.据统计2015年中国人口实际数量大约14亿,若实行全面两孩政策后,预计人口年增长率实际可达1%,那么需经过多少年我国人口可达16亿?
(参考数字:1.0125≈1.2824,lg2≈0.3010,lg7≈0.8451,lg1.01≈0.0043)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某企业打算购买工作服和手套,市场价为每套工作服53元,每副手套3元,该企业联系了两家商店A和B,由于用货量大,这两家商店都给出了优惠条件:
商店A:买一赠一,买一套工作服,赠一副手套;
商店B:打折,按总价的95%收款.
该企业需要工作服75套,手套x副(x≥75),如果工作服与手套只能在一家购买,请你帮助老板选择在哪一家商店购买更省钱?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,F(x)=$\left\{\begin{array}{l}{f(x),x>0}\\{-f(x),x<0}\end{array}\right.$,设m>0,n<0,m+n>0,a>0且f(x)为偶函数,判断F(m)+F(n)能否大于零?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知点M(3,-2),N(-5,-1),且$\overrightarrow{MP}=\frac{1}{2}\overrightarrow{MN}$,则点P是(  )
A.(-8,1)B.(-1,-$\frac{3}{2}$)C.(1,$\frac{3}{2}$)D.(8,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数${z_1}=\frac{1}{2}-\frac{{\sqrt{3}i}}{2}$和复数z2=cos30°+isin30°,则z1•z2为(  )
A.1B.-1C.$-\frac{1}{2}i$D.$\frac{{\sqrt{3}}}{2}-\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求下列函数的导数:
(1)y=$\frac{{x}^{2}-1}{2-x}$;
(2)y=$\frac{sinx}{1+cosx}$.

查看答案和解析>>

同步练习册答案