精英家教网 > 高中数学 > 题目详情

某电视台“挑战60秒”活动规定上台演唱:
(I)连续达到60秒可转动转盘(转盘为八等分圆盘)一次进行抽奖,达到90秒可转两次,达到120秒可转三次(奖金累加).

(2)转盘指针落在I、II、III区依次为一等奖(500元)、二等奖(200元)、三等奖(100元),落在其它区域不奖励.
(3)演唱时间从开始到三位评委中至少1人呜啰为止,现有一演唱者演唱时间为100秒.
①求此人中一等奖的概率;
②设此人所得奖金为,求的分布列及数学期望.

(1)  (2)200

解析试题分析:(1)由题意可知转一次奖获得一等奖的概率是,分成三类情况:①两次都中中一等奖②第一次中一等奖,第二次未中;③第一次未中一等奖,第二次中;
(2)分别计算出奖金为每一种情况的概率,然后列出分布列,再计算出期望值即可.
解: ①


0
100
200
300
400
500
600
700
1000










 

考点:相互独立事件的概率;离散型随机变量的分布列和数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.
(1)求张同学至少取到1道乙类题的概率;
(2)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对每道甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用表示张同学答对题的个数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).
(1)求选出的3名同学是来自互不相同学院的概率;
(2)设为选出的3名同学中女同学的人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为各人是否需使用设备相互独立.
(1)求同一工作日至少3人需使用设备的概率;
(2)X表示同一工作日需使用设备的人数,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)(2011•重庆)某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的4位申请人中:
(I)没有人申请A片区房源的概率;
(II)每个片区的房源都有人申请的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:

API
 

 

 

 

 

 

 

 
空气质量
 

 

 
轻微污染
 
轻度污染
 
中度污染
 
中度重污染
 
重度污染
 
天数
 
4
 
13
 
18
 
30
 
9
 
11
 
15
 
 
记某企业每天由空气污染造成的经济损失S(单位:元),空气质量指数API为ω。在区间[0,100]对企业没有造成经济损失;在区间对企业造成经济损失成直线模型(当API为150时造成的 经济损失为500元,当API为200时,造成的经济损失为700元);当API大于300时造成的 经济损失为2000元;
(1)试写出是S(ω)的表达式;
(2)试估计在本年内随机抽取一天,该天经济损失S大于200元且不超过600元的概率;
(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?
P(K2 ≥ k0)
 
0.25
 
0.15
 
0.10
 
0.05
 
0.025
 
0.010
 
0.005
 
0.001
 
k0
 
1.323
 
2.072
 
2.706
 
3.841
 
5.024
 
6.635
 
7.879
 
10.828
 

 

 
附:

 
 
非重度污染
 
重度污染
 
合计
 
供暖季
 
 
 
 
 
 
 
非供暖季
 
 
 
 
 
 
 
合计
 
 
 
 
 
100
 
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

高二年级的一个研究性学习小组在网上查知,某珍贵植物种子在一定条件下发芽成功的概率为,该研究性学习小组又分成两个小组进行验证性实验.
(1)第1组做了5次这种植物种子的发芽实验(每次均种下一粒种子),求他们的实验至少有3次成功的概率;
(2)第二小组做了若干次发芽试验(每次均种下一粒种子),如果在一次实验中种子发芽成功就停止实验,否则将继续进行下次实验,直到种子发芽成功为止,但发芽实验的次数最多不超过5次,求第二小组所做种子发芽实验的次数的概率分布列和期望.      

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某学校一位教师要去某地参加全国数学优质课比赛,已知他乘火车、轮船、汽车、飞机直接去的概率分别为0.3、0.1、0.2、0.4.
(1)求他乘火车或乘飞机去的概率;
(2)他不乘轮船去的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对有个元素的总体进行抽样,先将总体分成两个子总体 和(是给定的正整数,且),再从每个子总体中各随机抽取个元素组成样本.用表示元素同时出现在样本中的概率.
(1)求的表达式(用表示);
(2)求所有的和.

查看答案和解析>>

同步练习册答案