精英家教网 > 高中数学 > 题目详情
(2013•温州一模)已知q是等比数{an}的公比,则q<1”是“数列{an}是递减数列”的(  )
分析:题目给出的数列是等比数列,通过举反例说明公比小于1时数列还可能是递增数列,反之,递减的等比数列公比还可能大于1,从而得到“q<1”是“等比数列{an}是递减数列”的既不充分也不必要的条件.
解答:解:数列-8,-4,-2,…,该数列是公比q=
-4
-8
=
1
2
<1
的等比数列,但该数列是递增数列,所以,由等比数{an}的公比q<1,不能得出数列{an}是递减数列;
而数列-1,-2,-4,-8,…是递减数列,但其公比q=
-2
-1
>1
,所以,由数列{an}是递减数列,不能得出其公比
q<1.
所以,“q<1”是“等比数列{an}是递减数列”的既不充分也不必要的条件.
故选D.
点评:本题考查了必要条件、充分条件与充要条件,解答此类问题时,要说明一个命题不正确可用举反例的方法,此题是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•温州一模)如图,已知平面QBC与直线PA均垂直于Rt△ABC所在平面,且PA=AB=AC.
(Ⅰ)求证:PA∥平面QBC;
(Ⅱ)PQ⊥平面QBC,求二面角Q-PB-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•温州一模)已知函数f(x)=ax2-gx(a∈R),f′(x)是f(x)的导函数(g为自然对数的底数)
(Ⅰ)解关于x的不等式:f(x)>f′(x);
(Ⅱ)若f(x)有两个极值点x1,x2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•温州一模)已a,b,c分别是△AB的三个内角A,B,的对边,
2b-c
a
=
cosC
cosA

(Ⅰ)求A的大小;
(Ⅱ)求函数y=
3
sinB+sin(C-
π
6
)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•温州一模)方程(x-1)•sinπx=1在(-1,3)上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•温州一模)如图,已知平面QBC与直线PA均垂直于Rt△ABC所在平面,且PA=AB=AC,
(Ⅰ)求证:PA∥平面QBC;
(Ⅱ)若PQ⊥平面QBC,求CQ与平面PBC所成角的正弦值.

查看答案和解析>>

同步练习册答案