精英家教网 > 高中数学 > 题目详情
已知直线l1:2x-y+3=0和直线l2:x=-1,则抛物线y2=4x上一动点P到直线l1和l2的距离值和的最小值是
 
考点:直线与圆锥曲线的关系
专题:圆锥曲线的定义、性质与方程
分析:如图所示,过点P作PN⊥l2,PM⊥l1,垂足分别为N,M.由于直线l2是抛物线y2=4x的准线,可得|PN|=|PF|.当且仅当三点M,P,F共线时动点P到直线l1和l2的距离值和取得最小值|FM|.再利用点到直线的距离公式即可得出.
解答: 解:如图所示,
过点P作PN⊥l2,PM⊥l1,垂足分别为N,M.
∵直线l2是抛物线y2=4x的准线,∴|PN|=|PF|.
∴当且仅当三点M,P,F共线时动点P到直线l1和l2的距离值和取得最小值|FM|.
∴最小值|FM|=
|2-0+3|
5
=
5

故答案为:
5
点评:本题考查了抛物线的性质、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知AB为圆O的直径,AC与圆O相切于点A,CE∥AB交圆O于D、E两点,若AB=6,BE=2,则线段CD的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和是Sn,且Sn=2an-1;
(1)求数列{an}前n项的和Sn
(2)若数列(bn)满足bn=logSn+1+12logSn+12(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

某汽车租赁公司的月收益y元与每辆车的月租金x元间的关系为y=-
x2
50
+162x-21000.
(1)当每辆车的月租金定为5000元时,能租出多少辆车?
(2)每辆车的月租金多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“对任意实数x,2x>m(x2+1)”是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若对于任意的x,y∈[-1,1],x+y≠0,均有(x+y)[f(x)+f(y)]>0.
(1)判断f(x)的单调性,并加以证明;
(2)解不等式f(x+
1
2
)<f(1-2x);
(3)若对于区间[-1,1]上任意的x1,x2均有|f(x2)-f(x1)|≤m2-m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lnx-
1
2
ax2+x有极值且极值大于0,则a的取值范围是(  )
A、(0,1)
B、(1,2)
C、(0,2)
D、(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学对函数f(x)=xcosx进行研究后,得出以下五个结论:
①函数y=f(x)的图象是中心对称图形;
②对任意实数x,f(x)>0均成立;
③函数[a,b]的图象与x轴有无穷多个公共点,且任意相邻两点的距离相等;
④函数y=f(x)的图象与直线y=x有无穷多个公共点,且任意相邻两点的距离相等;
⑤当常数k满足|k|>1时,函数y=f(x)的图象与直线y=kx有且仅有一个公共点.
其中所有正确结论的序号是(  )
A、①②④B、①②③④
C、①②④⑤D、①②③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(1+x)-
ax
x+1
(a>0).
(1)实数a为何值时,使得f(x)在(0,+∞)内单调递增;
(2)证明:(
2014
2015
2015
1
e

查看答案和解析>>

同步练习册答案