精英家教网 > 高中数学 > 题目详情
若函数f(x)=alog2x+blog3x+2,且f(
1
2012
)=5
,则f(2012)的值为______.
由函数f(x)=alog2x+blog3x+2,
得f(
1
x
)=alog2
1
x
+blog3
1
x
+2=-alog2x-blog3x+2=4-(alog2x+blog3x+2),
因此f(x)+f(
1
x
)=4
再令x=2012得f(2012)+f(
1
2012
)=4
所以f(2012)=4-f(
1
2012
)=4-5
=-1,
故答案为:-1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数F(x)=,在由正数组成的数列{an}中,a1=1,=F(an)(nN*).

(1)求数列{an}的通项公式;

(2)在数列{bn}中,对任意正整数nbn·都成立,设Sn为数列{bn}的前n项和,比较Sn与12的大小;

(3)在点列An(2n,)(nN*)中,是否存在三个不同点AkAlAm,使AkAlAm在一条直线上?若存在,写出一组在一条直线上的三个点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x≠0),在由正数组成的数列{an}中,a1=1,f(an)(n∈N*).

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)在数列{bn}中,对任意正整数n,bn·=1都成立,设Sn为数列{bn}的前n项和,比较Sn的大小;

(Ⅲ)在点列An(2n,)(n∈N*)中,是否存在三个不同点Ak、Al、Am,使Ak、Al、Am在一条直线上?若存在,写出一组在一条直线上的三个点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案