ÒÑÖªº¯ÊýF(x)=£¬ÔÚÓÉÕýÊý×é³ÉµÄÊýÁÐ{an}ÖУ¬a1=1£¬=F(an)(n¡ÊN*).

£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»

£¨2£©ÔÚÊýÁÐ{bn}ÖУ¬¶ÔÈÎÒâÕýÕûÊýn£¬bn¡¤¶¼³ÉÁ¢£¬ÉèSnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬±È½ÏSnÓë12µÄ´óС£»

£¨3£©ÔÚµãÁÐAn(2n,)(n¡ÊN*)ÖУ¬ÊÇ·ñ´æÔÚÈý¸ö²»Í¬µãAk¡¢Al¡¢Am£¬Ê¹Ak¡¢Al¡¢AmÔÚÒ»ÌõÖ±ÏßÉÏ£¿Èô´æÔÚ£¬Ð´³öÒ»×éÔÚÒ»ÌõÖ±ÏßÉϵÄÈý¸öµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ.

£¨1£©½â£ºÓÉ=f(an)£¬µÃ==.?

¡à-=4,¼´{}ÊÇÒÔ=1ΪÊ×Ï4Ϊ¹«²îµÄµÈ²îÊýÁÐ.?

ÓÐ=1+£¨n-1£©¡Á4=4n-3£¬?

¡ßan£¾0,¡àan=.                                                                           ?

£¨2£©½â£º¡ßbn¡¤,?

¡àbn¡¤£Û(3n-1)+£Ý=bn(4n2-1)=1.?

¡àbn==(-).?

¡àSn=b1+b2+¡­+bn?

=£Û(1-)+(-)+¡­+(-)£Ý?

=(1-)£¼.?

¡àSn£¼.                                                                                                               ?

£¨3£©½â£ºµãÁÐAn(2n,(n¡ÊN*)Öв»¿ÉÄÜÓй²ÏßµÄÈý¸öµã.         ?

¸ù¾Ý£¨1£©£¬¿ÉµÃAn(2n,)(n¡ÊN*)£¬?

Áîx=2n,y=,Ôòy=£¨x¡Ý2£©.?

µã£¨x,y£©ÔÚÇúÏßx2-y2=1(x¡Ý2,y¡Ý)ÉÏ£¬?

ËùÒÔAn(2n,)ÔÚÇúÏßx2-y2=1(x¡Ý2,y¡Ý)ÉÏ£¬¶øÖ±Ïß·½³ÌÓëx2-y2=1ÁªÁ¢×é³ÉµÄ·½³Ì×é×î¶àÓÐÁ½×鲻ͬµÄ½â.ËùÒÔÖ±ÏßÓëx2-y2=1×î¶àÓÐÁ½¸ö½»µã.?

ËùÒÔµãÁÐAn(2n,)(n¡ÊN*)Öв»¿ÉÄÜÓй²ÏßµÄÈý¸öµã.

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf(x)=
3x+5£¬(x¡Ü0)
x+5£¬(0£¼x¡Ü1)
-2x+8£¬(x£¾1)
£¬
Çó£¨1£©f(
1
¦Ð
)£¬f[f(-1)]
掙术
£¨2£©Èôf£¨a£©£¾2£¬ÔòaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÒÑÖªº¯Êýf(x)=
(1-3a)x+10ax¡Ü7
ax-7x£¾7.
ÊǶ¨ÒåÓòÉϵĵݼõº¯Êý£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A¡¢(
1
3
£¬1)
B¡¢£¨
1
3
£¬
1
2
]
C¡¢£¨
1
3
£¬
6
11
]
D¡¢[
6
11
£¬1
£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf(x)=
|x-1|-a
1-x2
ÊÇÆ溯Êý£®ÔòʵÊýaµÄֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf(x)=
2x-2-x2x+2-x

£¨1£©Çóf£¨x£©µÄ¶¨ÒåÓòÓëÖµÓò£»
£¨2£©ÅжÏf£¨x£©µÄÆæżÐÔ²¢Ö¤Ã÷£»
£¨3£©Ñо¿f£¨x£©µÄµ¥µ÷ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf(x)=
x-1x+a
+ln(x+1)
£¬ÆäÖÐʵÊýa¡Ù1£®
£¨1£©Èôa=2£¬ÇóÇúÏßy=f£¨x£©Ôڵ㣨0£¬f£¨0£©£©´¦µÄÇÐÏß·½³Ì£»
£¨2£©Èôf£¨x£©ÔÚx=1´¦È¡µÃ¼«Öµ£¬ÊÔÌÖÂÛf£¨x£©µÄµ¥µ÷ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸