精英家教网 > 高中数学 > 题目详情
8、函数f(x)=loga|x|+1(0<a<1)的图象大致为(  )
分析:考查函数的性质,根据其性质来选取对应的图象,此函数是一个偶函数,由于对数式底数范围为0<a<1,故在(0,+∞)上是减函数,在对称的区间上就是增函数,由表达式可以看出函数的图象过(1,1)与(-1,-1),根据这些特征选取选项即可.
解答:解:考查函数f(x)=loga|x|+1(0<a<1),
知其在(0,+∞)上是减函数,故排除B,C,
又当x=±1时,y=1,故函数图象过(1,1)与(-1,-1)两点,可以排除D,由此得A正确.
故选A.
点评:本题考点是对数函数的图象,考查对数型函数图象的特征,研究此类函数图象的性质需要借助对数函数的图象特征类比研究,做本题时用了排除法,可以看出排除法做选择题是一个很好的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、设函数f(x)=logαx(a>0)且a≠1,若f(x1•x2…x10)=50,则f(x12)+f(x22)+…f(x102)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log -
1
2
(x2-ax+3a)在[2,+∞)上是减函数,则实数a的范围是(  )
A、(-∞,4]
B、(-4,4]
C、(0,12)
D、(0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log 2(x2-x-2)
(1)求f(x)的定义域;
(2)当x∈[3,4]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设有三个命题:“①0<
1
2
<1.②函数f(x)=log 
1
2
x是减函数.③当0<a<1时,函数f(x)=logax是减函数”.当它们构成三段论时,其“小前提”是
(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•茂名二模)设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的高调函数.现给出下列命题:
①函数f(x)=log 
1
2
x为(0,+∞)上的高调函数;
②函数f(x)=sinx为R上的高调函数;
③如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的高调函数,那么实数m的取值范围是[2,+∞);
其中正确的命题的个数是(  )

查看答案和解析>>

同步练习册答案