【题目】已知数列是以为公差的等差数列,数列的前项和为,满足, ,则不可能是( )
A. -1 B. 0
C. 2 D. 3
【答案】D
【解析】因为数列是以为公差的等差数列,所以,则,其中,取,得;取,得;取,得; 可以取到,排除,故选D.
【 方法点睛】本题主要考查数列的通项公式、排除法解选择题,属于难题. 用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法. 若结果为定值,则可采用此法. 特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前 项和公式问题等等.
科目:高中数学 来源: 题型:
【题目】某校乒乓球队有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:
一年级 | 二年级 | 三年级 | |
男同学 | A | B | C |
女同学 | X | Y | Z |
现从这6名同学中随机选出2人参加乒乓球比赛(每人被选到的可能性相同).
(1)用表中字母列举出所有可能的结果;
(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在最强大脑的舞台上,为了与国际X战队PK,假设某季Dr.魏要从三名擅长速算的选手A1,A2,A3,三名擅长数独的选手B1,B2,B3,两名擅长魔方的选手C1,C2中各选一名组成中国战队.假定两名魔方选手中更擅长盲拧的选手C1已确定入选,而擅长速算与数独的选手入选的可能性相等.
(Ⅰ)求A1被选中的概率;
(Ⅱ)求A1,B1不全被选中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设 , , 均为非零向量,已知命题p: = 是 = 的必要不充分条件,命题q:x>1是|x|>1成立的充分不必要条件,则下列命题是真命题的是( )
A.p∧q
B.p∨q
C.(¬p)∧(¬q)
D.p∨(¬q)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}为等比数列, 公比为 为数列{an}的前n项和.
(1)若求;
(2)若调换的顺序后能构成一个等差数列,求的所有可能值;
(3)是否存在正常数,使得对任意正整数n,不等式总成立?若存在,求出的范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某小学体育素质达标运动会上,对10名男生和10名女生在一分钟跳绳的次数进行统计,得到如下所示茎叶图:
(1)已知男生组中数据的中位数为125,女生组数据的平均数为124,求x,y的值;
(2)现从这20名学生中任意抽取一名男生和一名女生对他们进行训练,记一分钟内跳绳次数不低于115且不超过125的学生被选上的人数为X,求X的分布列和数学期望E(X).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面有四个结论:
①若数列的前项和为 (为常数),则为等差数列;
②若数列是常数列,数列是等比数列,则数列是等比数列;
③在等差数列中,若公差,则此数列是递减数列;
④在等比数列中,各项与公比都不能为.
其中正确的结论为__________(只填序号即可).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知三棱锥O﹣ABC的侧棱OA,OB,OC两两垂直,且OA=1,OB=OC=2,E是OC的中点.
(1)求异面直线BE与AC所成角的余弦值;
(2)求直线BE和平面ABC的所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com