精英家教网 > 高中数学 > 题目详情

【题目】已知数列是以为公差的等差数列,数列的前项和为,满足 ,则不可能是(  )

A. -1 B. 0

C. 2 D. 3

【答案】D

【解析】因为数列是以为公差的等差数列,所以,则,其中,取,得;取,得;取,得 可以取到,排除,故选D.

【 方法点睛】本题主要考查数列的通项公式、排除法解选择题,属于难题. 用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法. 若结果为定值,则可采用此法. 特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前 项和公式问题等等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值.

(1)求常数k的值;

(2)求函数的单调区间与极值;

(3)设,且 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校乒乓球队有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:

一年级

二年级

三年级

男同学

A

B

C

女同学

X

Y

Z

现从这6名同学中随机选出2人参加乒乓球比赛每人被选到的可能性相同).

1用表中字母列举出所有可能的结果

2设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在最强大脑的舞台上,为了与国际X战队PK,假设某季Dr.魏要从三名擅长速算的选手A1,A2,A3,三名擅长数独的选手B1,B2,B3,两名擅长魔方的选手C1,C2中各选一名组成中国战队.假定两名魔方选手中更擅长盲拧的选手C1已确定入选,而擅长速算与数独的选手入选的可能性相等.

()A1被选中的概率;

()A1,B1不全被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 均为非零向量,已知命题p: = = 的必要不充分条件,命题q:x>1是|x|>1成立的充分不必要条件,则下列命题是真命题的是(
A.p∧q
B.p∨q
C.(¬p)∧(¬q)
D.p∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}为等比数列, 公比为 为数列{an}的前n项和.

(1)若;

(2)若调换的顺序后能构成一个等差数列,求的所有可能值;

(3)是否存在正常数,使得对任意正整数n,不等式总成立?若存在,求出的范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某小学体育素质达标运动会上,对10名男生和10名女生在一分钟跳绳的次数进行统计,得到如下所示茎叶图:
(1)已知男生组中数据的中位数为125,女生组数据的平均数为124,求x,y的值;
(2)现从这20名学生中任意抽取一名男生和一名女生对他们进行训练,记一分钟内跳绳次数不低于115且不超过125的学生被选上的人数为X,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面有四个结论:

①若数列的前项和为 (为常数),为等差数列;

②若数列是常数列,数列是等比数列,则数列是等比数列;

③在等差数列,若公差,则此数列是递减数列;

④在等比数列中,各项与公比都不能为.

其中正确的结论为__________(只填序号即可).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱锥O﹣ABC的侧棱OAOBOC两两垂直,且OA=1OB=OC=2EOC的中点.

1)求异面直线BEAC所成角的余弦值;

2)求直线BE和平面ABC的所成角的正弦值.

查看答案和解析>>

同步练习册答案