精英家教网 > 高中数学 > 题目详情
3.已知数列{an}满足:a1+3a2+32a3+…+3n-1an=n,n∈N*
(1)求数列{an}的通项;
(2)设数列{bn}满足bn=2${log_{\frac{1}{3}}}{a_n}$+1,求数列$\frac{1}{{{b_n}{b_{n+1}}}}$的前n项和Sn

分析 (I)利用递推关系即可得出.
(Ⅱ)由(Ⅰ)知${b_n}=2{log_{\frac{1}{3}}}{({\frac{1}{3}})^{n-1}}+1$=2n-1,再利用“裂项求和”方法即可得出.

解答 解:(Ⅰ)当n≥2时,${a_1}+3{a_2}+{3^2}{a_3}+…+{3^{n-1}}{a_n}=n$,①${a_1}+3{a_2}+{3^2}{a_3}+…+{3^{n-2}}{a_{n-1}}=n-1$,②
由①-②得:3n-1an=1,∴${a_n}=\frac{1}{{{3^{n-1}}}}$.
当n=1时,a1=1也满足上式,∴${a_n}=\frac{1}{{{3^{n-1}}}}(n∈{N^*})$.
(Ⅱ)由(Ⅰ)知${b_n}=2{log_{\frac{1}{3}}}{({\frac{1}{3}})^{n-1}}+1$=2(n-1)+1=2n-1,
∴$\frac{1}{{{b_n}\;•\;{b_{n+1}}}}=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}({\frac{1}{2n-1}-\frac{1}{2n+1}})$,
∴${S_n}=\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+\frac{1}{{{b_3}{b_4}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}$=$\frac{1}{2}({1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+…+\frac{1}{2n-1}-\frac{1}{2n+1}})$=$\frac{1}{2}({1-\frac{1}{2n+1}})=\frac{n}{2n+1}$.

点评 本题考查了递推关系、“裂项求和”方法、对数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.函数y=log${\;}_{\frac{1}{2}}$(|x-1|-|x+3|)的值域为[-2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx+$\frac{k}{x}$.
(1)若函数f(x)在区间为(0,1)上单调递减,求k的取值范围;
(2)若k取(1)中的最小值,且x≥1,求证:2+$\frac{1-e}{x}$≤f(x)≤$\frac{1}{2}$(x+$\frac{1}{x}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{2}$ax2-(2a+1)x+2lnx(a∈R).
(1)当a=1时,求函数f(x)的单调区间;
(2)当a>0时,设g(x)=(x2-2x)ex,求证:对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=(x-1)2(x-a)(a∈R)在x=$\frac{5}{3}$处取得极值.
(1)求实数a的值;
(2)求函数y=f(x)在闭区间[0,3]的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.f(x)为定义在R上的可导函数,且f′(x)>f(x),对任意正数a,则下列式子成立的是(  )
A.f(a)<eaf(0)B.eaf(a)<f(0)C.f(a)>eaf(0)D.eaf(a)>f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx,g(x)=x-1.
(I)当x≠1时,证明:f(x)<g(x)
(II)证明不等式:ln2+$\frac{ln3}{2}$+…+$\frac{ln(n+1)}{n}$<n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若函数f(x)=$\frac{1}{3}$x3-x在(2m,1-m)上有最大值,则实数m的取值范围是[-1,-$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=ex-lnx-1,其中e是自然对数的底数
(1)求证:函数f(x)存在极小值;
(2)若?x∈[$\frac{1}{2}$,+∞),使得不等式$\frac{{e}^{x}}{x}$-lnx-$\frac{m}{x}$≤0成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案