精英家教网 > 高中数学 > 题目详情
若函数y=x2-
m
n
x+
1
n
的图象在点M(0,
1
n
)
处的切线l与圆C:x2+y2=1相交,则点P(m,n)与圆C的位置关系是(  )
A、圆内B、圆外
C、圆上D、圆内或圆外
分析:根据f′(0)求出切线的斜率,表示出切线方程,因为切线l与圆相交得到圆心到直线的距离小于半径列出关系式,得到根据点到圆心的距离与半径比较大小得到点与圆C的位置关系.
解答:解:函数f(x)图象在M处切线l的斜率k=f′(0)=-
m
n

∴切线l的方程为mx+ny=1,
∵与x2+y2=1相交,所以圆心(0,0)到切线l的距离d=
|1|
m2+n2
=
1
m2+n2
<1
解得
m2+n2
> 1

而P(m,n)到圆心(0,0)的距离
m2+n2
> 1
,所以点在圆外.
故选B
点评:本题是一道综合题,要求学生会根据d与r的大小判断点与圆的位置关系,理解直线与圆垂直时圆心到直线的距离等于半径,以及灵活运用点到直线的距离公式化简求值.会根据导函数求曲线上某点切线的斜率.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设定义域在[x1,x2]的函数y=f(x)的图象为C,C的端点分别为A、B,M是C上的任一点,向量
OA
=(x1y1),
OB
=(x2y2),
OM
=(x,y)
,若x=λx1+(1-λ)x2,记向量
ON
OA
+(1-λ)
OB
,现定义“函数y=f(x)在[x1,x2]上可在标准K下线性近似”是指|
MN
|≤K
恒成立,其中K是一个正数.
(1)证明:0≤λ≤1(2);
(3)请你给出一个标准K的范围,使得[0,1]上的函数y=x2(4)与y=x3(5)中有且只有一个可在标准K下线性近似.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)已知函数y=f(x)在区间[a,b]上均有意义,且A、B是其图象上横坐标分别为a、b的两点.对应于区间[0,1]内的实数λ,取函数y=f(x)的图象上横坐标为x=λa+(1-λ)b的点M,和坐标平面上满足
MN
MA
+(1-λ)
MB
的点N,得
MN
.对于实数k,如果不等式|MN|≤k对λ∈[0,1]恒成立,那么就称函数f(x)在[a,b]上“k阶线性近似”.若函数y=x2+x在[1,2]上“k阶线性近似”,则实数k的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求函数y=
x2-2x+1
x-2
  (x<2)的最大值
(2)函数y=loga(x+3)(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,求
1
m
+
2
n
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知函数y=f(x)在区间[a,b]上均有意义,且A、B是其图象上横坐标分别为a、b的两点.对应于区间[0,1]内的实数λ,取函数y=f(x)的图象上横坐标为x=λa+(1-λ)b的点M,和坐标平面上满足数学公式的点N,得数学公式.对于实数k,如果不等式|MN|≤k对λ∈[0,1]恒成立,那么就称函数f(x)在[a,b]上“k阶线性近似”.若函数y=x2+x在[1,2]上“k阶线性近似”,则实数k的取值范围为


  1. A.
    数学公式
  2. B.
    [0,+∞)
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源:2012年福建省泉州市高三3月质量检查数学试卷(文科)(解析版) 题型:选择题

已知函数y=f(x)在区间[a,b]上均有意义,且A、B是其图象上横坐标分别为a、b的两点.对应于区间[0,1]内的实数λ,取函数y=f(x)的图象上横坐标为x=λa+(1-λ)b的点M,和坐标平面上满足的点N,得.对于实数k,如果不等式|MN|≤k对λ∈[0,1]恒成立,那么就称函数f(x)在[a,b]上“k阶线性近似”.若函数y=x2+x在[1,2]上“k阶线性近似”,则实数k的取值范围为( )
A.
B.[0,+∞)
C.
D.

查看答案和解析>>

同步练习册答案