精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若函数上单调递减,求实数的取值范围.

2)讨论函数的单调性.

【答案】(1);(2)见详解

【解析】

1)利用等价转换的思想,紧接着分离参数,然后构造新的函数,通过观察新函数的单调性,根据新函数的值域与的关系,可得结果.

2)利用导数研究含参数的函数的单调性,结合分类讨论,可得结果.

1)依题意:

所以上恒成立,

,而

时,

,解得

即实数的取值范围为.

2)由(1)可得,

,令

,则

,解得

其中

①若,则

②若

,故当时,

③若

,其中

故当时,

时,

,其中

故当时,

时,

时,

综上所述:

时,

函数上单调递增;

时,

函数上单调递增,

上单调递减;

时,

函数

上单调递增,

上单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)若,求曲线的交点坐标;

2)过曲线上任一点作与夹角为30°的直线,交于点,且的最大值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为常数, ,函数 (其中是自然对数的底数).

(1)过坐标原点作曲线的切线,设切点为,求证:

(2)令,若函数在区间上是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例若输入的值分别为52,则输出的值为(

A.64B.68C.72D.133

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数且a≠0).

(1)求曲线y=f(x)在点(1,f(1))处的切线方程;

(2)若函数f(x)的极小值为,试求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,等腰梯形中,ECD中点,将沿AE折到的位置.

(1)证明:

(2)当折叠过程中所得四棱锥体积取最大值时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)在曲线上任取一点,连接,在射线上取,使,点轨迹的极坐标方程;

2)在曲线上任取一点,在曲线上任取一点,的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)写出曲线的极坐标方程,并求出曲线公共弦所在直线的极坐标方程;

2)若射线与曲线交于两点,与曲线交于点,且,求的值.

查看答案和解析>>

同步练习册答案