【题目】已知曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)写出曲线
的极坐标方程,并求出曲线
与
公共弦所在直线的极坐标方程;
(2)若射线
与曲线
交于
两点,与曲线
交于
点,且
,求
的值.
科目:高中数学 来源: 题型:
【题目】自从新型冠状病毒爆发以来,全国范围内采取了积极的措施进行防控,并及时通报各项数据以便公众了解情况,做好防护.以下是湖南省2020年1月23日-31日这9天的新增确诊人数.
日期 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
时间 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
新增确诊人数 | 15 | 19 | 26 | 31 | 43 | 78 | 56 | 55 | 57 |
经过医学研究,发现新型冠状病毒极易传染,一个病毒的携带者在病情发作之前通常有长达14天的潜伏期,这个期间如果不采取防护措施,则感染者与一位健康者接触时间超过15秒,就有可能传染病毒.
(1)将1月23日作为第1天,连续9天的时间作为变量x,每天新增确诊人数作为变量y,通过回归分析,得到模型
用于对疫情进行分析.对上表的数据作初步处理,得到下面的一些统计量的值(部分数据已作近似处理):
,
.根据相关数据,求该模型的回归方程(结果精确到0.1),并依据该模型预测第10天新增确诊人数.
(2)如果一位新型冠状病毒的感染者传染给他人的概率为0.3,在一次12人的家庭聚餐中,只有一位感染者参加了聚餐,记余下的人员中被感染的人数为
,求
最有可能(即概率最大)的值是多少.
附:对于一组数据
,
…,
,其回归直线
的斜率和截距的最小二乘估计分别为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,点
,
是圆上一动点,点
在线段
上,点
在半径
上,且满足
.
(1)当
在圆上运动时,求点
的轨迹
的方程;
(2)设过点
的直线
与轨迹
交于点
(
不在
轴上),垂直于
的直线交
于点
,与
轴交于点
,若
,求点
横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
,下述四个结论:
①
是偶函数;
②
的最小正周期为
;
③
的最小值为0;
④
在
上有3个零点
其中所有正确结论的编号是( )
A.①②B.①②③C.①③④D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
为参数),在以坐标原点
为极点,
轴的正半轴为极轴的极坐标系中,点
的极坐标为
,直线
的极坐标方程为
.
(1)求直线
的直角坐标方程与曲线
的普通方程;
(2)若
是曲线
上的动点,
为线段
的中点,求点
到直线
的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为
与
,且乙投球2次均未命中的概率为
.
(Ⅰ)求乙投球的命中率
;
(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为
,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
的圆心
的坐标为
,且圆
与直线
:
相切,过点
的动直线
与圆
相交于
,
两点,直线
与直线
的交点为
.
(1)求圆
的标准方程;
(2)求
的最小值;
(3)问:
是否是定值?若是,求出这个定值;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com