【题目】
甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为
与
,且乙投球2次均未命中的概率为
.
(Ⅰ)求乙投球的命中率
;
(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为
,求
的分布列和数学期望.
科目:高中数学 来源: 题型:
【题目】已知点
是椭圆
的右焦点,过点
的直线
交椭圆于
两点,当直线
过
的下顶点时,
的斜率为
,当直线
垂直于
的长轴时,
的面积为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)当
时,求直线
的方程;
(Ⅲ)若直线
上存在点
满足
成等比数列,且点
在椭圆外,证明:点
在定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)写出曲线
的极坐标方程,并求出曲线
与
公共弦所在直线的极坐标方程;
(2)若射线
与曲线
交于
两点,与曲线
交于
点,且
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体
的棱长为2,
分别为
的中点,则以下说法错误的是( )
![]()
A.平面
截正方体所的截面周长为![]()
B.存在
上一点
使得
平面![]()
C.三棱锥
和
体积相等
D.存在
上一点
使得
平面![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔仔细算相还”,其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,则该人第五天走的路程为( )
A. 6里B. 12里C. 24里D. 48里
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样检查,测得身高情况的统计图如下:
![]()
(1)估计该校男生的人数;并求出
值
(2)估计该校学生身高在
之间的概率;
(3)从样本中身高在
之间的女生中任选2人,求至少有1人身高在
之间的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共有编号分别为1,2,3,4,5的五个座位,在甲同学不坐2号座位,乙同学不坐5号座位的条件下,甲、乙两位同学的座位号相加是偶数的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com