精英家教网 > 高中数学 > 题目详情

【题目】如图,正方体的棱长为2分别为的中点,则以下说法错误的是(

A.平面截正方体所的截面周长为

B.存在上一点使得平面

C.三棱锥体积相等

D.存在上一点使得平面

【答案】B

【解析】

对于A,平面截正方体所得的截面为梯形,求出梯形的周长即可得解;

对于B,通过建立空间直角坐标系,设出点坐标,证出不成立,即可得出B选项错误;

对于C,通过等体积法,分别求出三棱锥的体积,进而得解;

对于D,通过线线平行,证得线面平行,进而得解.

对于A选项,连接

分别为的中点,

四点共线,

平面截正方体所得的截面为梯形

截面周长

A正确;

对于B选项,建立如图所示的空间直角坐标系,

所以

平面,则,而显然不成立,

所以不垂直,所以上不存在点,使得平面

所以B选项错误;

对于C选项,

所以成立,C正确;

对于D选项,取的中点的中点,连接

四边形为平行四边形,

平面平面

平面的中点,

上存在一点使得平面,故D正确.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某大学就业部从该大学2018年毕业且已就业的大学本科生中随机抽取了100人进行了问卷调查,其中有一项是他们的薪酬,经调查统计,他们的月薪在3000元到10000元之间,根据统计数据得到如下频率分布直方图:

若月薪在区间的左侧,则认为该大学本科生属“就业不理想”的学生,学校将与本人联系,为其提供更好的指导意见.其中分别是样本平均数和样本标准差,计算得(同一组中的数据用该组区间的中点值作代表)

1)现该校2018届本科毕业生张静的月薪为3600元,判断张静是否属于“就业不理想”的学生?用样本估计总体,从该校2018届本科毕业生随机选取一人,属于“就业不理想”的概率?

2)为感谢同学们对调查的支持配合,该校利用分层抽样的方法从样本的前3组中抽出6人,每人赠送一份礼品,并从这6人中再抽取2人,每人赠送新款某手机1部,求获赠手机的2人中恰有1人月薪不超过5000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数,试讨论的单调性;

2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,下述四个结论:

是偶函数;

的最小正周期为

的最小值为0

上有3个零点

其中所有正确结论的编号是(

A.①②B.①②③C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,动圆与圆外切并与圆内切,圆心的轨迹为曲线.

1)求的方程;

2)若直线与曲线交于两点,问是否在轴上存在一点,使得当变动时总有?若存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为,且乙投球2次均未命中的概率为.

)求乙投球的命中率

)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;

(2)设点的极坐标为,点在曲线上,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某音乐院校举行“校园之星”评选活动,评委由本校全体学生组成,对两位选手,随机调查了个学生的评分,得到下面的茎叶图:

通过茎叶图比较两位选手所得分数的平均值及分散程度(不要求计算出具体值,得出结论即可);

校方将会根据评分记过对参赛选手进行三向分流:

所得分数

低于

分到

不低于

分流方向

淘汰出局

复赛待选

直接晋级

记事件获得的分流等级高于”,根据所给数据,以事件发生的频率作为相应事件发生的概率,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,过点的直线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为,记直线与曲线分别交于两点.

(1)求曲线的直角坐标方程;

(2)证明:成等比数列.

查看答案和解析>>

同步练习册答案