精英家教网 > 高中数学 > 题目详情

【题目】某音乐院校举行“校园之星”评选活动,评委由本校全体学生组成,对两位选手,随机调查了个学生的评分,得到下面的茎叶图:

通过茎叶图比较两位选手所得分数的平均值及分散程度(不要求计算出具体值,得出结论即可);

校方将会根据评分记过对参赛选手进行三向分流:

所得分数

低于

分到

不低于

分流方向

淘汰出局

复赛待选

直接晋级

记事件获得的分流等级高于”,根据所给数据,以事件发生的频率作为相应事件发生的概率,求事件发生的概率.

【答案】(1)详见解析(2)

【解析】

(1)通过茎叶图可以看出,得分数的平均值高于得分数的平均值,得分数比较集中,得分数比较分散;

2)记表示事件:选手直接晋级”表示事件:选手复赛待选”表示事件:选手复赛待选”表示事件:选手淘汰出局利用独立事件的概率乘法公式,即可求解.

(1)通过茎叶图可以看出,选手所得分数的平均值高于选手所得分数的平均值;

选手所得分数比较集中,选手所得分数比较分散.

2)记表示事件:选手直接晋级”表示事件:选手复赛待选”

表示事件:选手复赛待选”表示事件:选手淘汰出局

独立,独立,互斥,

由所给数据得发生的频率分别为.

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中a

I)若直线是曲线的切线,求ab的最大值;

)设,若关于x的方程有两个不相等的实根,求a的最大整数值.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下说法正确的是(

A.命题的否定是

B.命题互为倒数,则的逆命题为真

C.命题都是偶数,则是偶数的否命题为真

D.的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p;命题q:方程表示双曲线.

⑴若命题p为真命题,求实数m的取值范围;

⑵若命题为真命题,为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,圆.以极点为原点,极轴为轴正半轴建立直角坐标系,直线经过点且倾斜角为.

求圆的直角坐标方程和直线的参数方程;

已知直线与圆交与,满足的中点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两队进行防溺水专题知识竞赛,每队3人,首轮比赛每人一道必答题,答对者则为本队得1分,答错或不答得0分,己知甲队每人答对的概率分别为,乙队每人答对的概率均为.设每人回答正确与否互不影响,用表示首轮比赛结束后甲队的总得分.

1)求随机变量的分布列;

2)求在首轮比赛结束后甲队和乙队得分之和为2的条件下,甲队比乙队得分高的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线在点处的切线与直线垂直,求的值及函数的单调区间;

(2)若的极大值和极小值分别为,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数,.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,射线与曲线交于两点,直线与曲线相交于两点.

(Ⅰ)求直线的普通方程和曲线C的直角坐标方程;

(Ⅱ)当时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C (a>b>0)的一个顶点为A(2,0),离心率为.直线yk(x-1)与椭圆C交于不同的两点MN.

(1)求椭圆C的方程;

(2)当△AMN的面积为时,求k的值.

查看答案和解析>>

同步练习册答案