精英家教网 > 高中数学 > 题目详情

a=(-1,1),b=(4,3),c=(5,-2)

⑴求a b夹角的余弦值

⑵求ca方向上的投影

⑶求λ1与λ2,使c=λ1a+λ2b

 

【答案】

(1);(2)

(3)

【解析】运用向量的共线与向量的数量积的性质。运用平面向量的基本定理表示向量的方法.

解:(1)因为a=(-1,1),b=(4,3),c=(5,-2)

所以cos<a, b >= …………….4分

(2)ca方向上的投影即为…………….8分

(3)因为c=λ1a+λ2b

…………….12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a>1,定义f(n)=
1
n+1
+
1
n+2
+…+
1
2n
,如果对任意的n∈N*且n≥2,不等式12f(n)+7logab>7loga+1b+7(a>0且a≠1)恒成立,则实数b的取值范围是(  )
A、(2,
29
17
)
B、(0,1)
C、(0,4)
D、(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

1、设A={x|x≥1},U=R,求CuA=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在一个试验模型中,设A表示一个随机事件,
.
A
表示A的对立事件.以下给出了3个结论:
①P(A)=P(
.
A
);  ②P(A+
.
A
)=1; ③若P(A)=1,则P(
.
A
)=0.
其中错误的结论共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳三模)已知函数f(x)=[x2-(a+2)x-2a2+a+2]ex
(1)求函数f(x)的单调增区间;
(2)设a>0,x=2是f(x)的极值点,函数h(x)=xe-xf(x).若过点A(0,m)(m≠0)可作曲线y=h(x)的三条切线,求实数m的取值范围;
(3)设a>1,函数g(x)=(a2+4)ex,若存在x1∈[0,1]、x2∈[0,1],使|f(x1)-f(x2)|<12,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)(1)证明:若数列{an}有递推关系an+1=Aan+B,其中A、B为常数,且A≠1,B≠0,则数列{an}是以A为公比的等比数列;

(2)若数列{an}对于任意的n∈N*都有Sn=2an-n,令f(x)=a1x+a2x2+…+anxn,求函数f(x)在x=1处的导数.

(文)设数列{an}的前n项和为Sn,已知对于任意的n∈N*,都有Sn=2an-n.

(1)求数列{an}的首项a1及递推关系式:an+1=f(an);

(2)先阅读下面的定理:“若数列{an}有递推关系an+1=Aan+B,其中A、B为常数,且A≠1,B≠0,

则数列{an}是以A为公比的等比数列”.请你在(1)的基础上应用本定理,求数列{an}的通项公式;

(3)求数列{an}的前n项和Sn

查看答案和解析>>

同步练习册答案