精英家教网 > 高中数学 > 题目详情
已知抛物线y2=4x,点A为其上一动点,P为OA的中点(O为坐标原点),且点P恒在抛物线C上,
(1)求曲线C的方程;
(2)若M点为曲线C上一点,其纵坐标为2,动直线L交曲线C与T、R两点:
    ①证明:当动直线L恒过定点N(4,-2)时,∠TMR为定值;
    ②几何画板演示可知,当∠TMR等于①中的那个定值时,动直线L必经过某个定点,请指出这个定点的坐标.(只需写出结果,不必证明)
考点:抛物线的简单性质
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)利用设P(x,y),则A(2x,2y),根据A在抛物线y2=4x上,可得结论;
(2)①求出M的坐标,分类讨论,利用向量知识,可得结论;②定点为N(4,-2).
解答: (1)解:设P(x,y),则A(2x,2y)
∵A在抛物线y2=4x上,∴(2y)2=4(2x)即y2=2x
∴抛物线C的方程为y2=2x.------------------------------------------------(4分)
(2)①证明:∵M点为曲线C上一点,其纵坐标为2,
∴M(2,2)--------------------(5分)
当直线L垂直x轴即为x=4时,T(4,2
2
),R(4,-2
2
)

此时,kMTkMR=
2
2
-2
2
2
2
+2
-2
=-1
,所以∠TMR=
π
2

∴可以猜∠TMR=
π
2
-------------------------------------------.(8分)
显然直线L不能与x轴平行,∴可以设直线L为x-4=m(y+2)T(x1,y1),R(x2,y2
联立y2=2x得到y2-2my-4m-8=0,y1+y2=2m,y1y2=-4m-8-------------(10分)
MT
MR
=(x1-2,y1-2)•(x2-2,y2-2)
=(x1-2,)(x2-2)+(y1-2)(y2-2)
=(my1+2m+2)(my2+2m+2)+(y1-2)(y2-2)
=(m2+1)y1y2+(2m2+2m-2)(y1+y2)+(2m+2)2+4
=(m2+1)(-4m-8)+(2m2+2m-2)2m+(2m+2)2+4
=0

∠TMR=
π
2
--------------------------------------------------------(13分)
②定点为N(4,-2)---------------------------------------------------(14分)
点评:本题考查轨迹方程,考查直线与抛物线的位置关系,考查向量知识的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A={a1,a2,a3,a4,a5},B={a12,a22,a32,a42,a52},其中a1,a2,a3,a4,a5∈Z,设a1<a2<a3<a4<a5,且A∩B={a1,a4},a1+a4=10,又A∪B元素之和为224.求:
(1)a1,a4;      (2)a5;       (3)A.

查看答案和解析>>

科目:高中数学 来源: 题型:

由4名同学组成的志愿者招募宣传队,经过初步选定,2名男同学,4名女同学共6名同学成为候选人,每位候选人当选宣传队队员的机会是相同的.
(1)求当选的4名同学中恰有1名男同学的概率;
(2)求当选的4名同学中至少有3名女同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|-2≤x≤a,a≥-2},B={y|y=2x+3,x∈A},C={y|y=x2,x∈A},求使B∪C=B时a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了参加2013年市级高中篮球比赛,该市的某区决定从四所高中学校选出12人组成男子篮球队代表所在区参赛,队员来源人数如下表:
学校 学校甲 学校乙 学校丙 学校丁
人数 4 4 2 2
该区篮球队经过奋力拼搏获得冠军,现要从中选出两名队员代表冠军队发言.
(Ⅰ)求这两名队员来自同一学校的概率;
(Ⅱ)设选出的两名队员中来自学校甲的人数为ξ,求随机变量ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

C
 
5
7
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式
2-x
+
x+1
<m
对于任意的x∈[-1,2]恒成立
(Ⅰ)求m的取值范围;
(Ⅱ)在(Ⅰ)的条件下求函数f(m)=m+
1
(m-2)2
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2-2x+mx-4=0上的两点M、N关于直线2x+y=0对称,直线l:tx+y-t+1=0(t∈R)与圆C相交于A、B两点,则|AB|的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线:x-y+1=0与圆:(x-1)2+(y+5)2=4的位置关系是(  )
A、相交但不过圆心B、相切
C、相离D、相交且过圆心

查看答案和解析>>

同步练习册答案