精英家教网 > 高中数学 > 题目详情

【题目】下列函数中,其图象既是轴对称图形又在区间(0,+∞)上单调递增的是( )
A.y=
B.y=﹣x2+1
C.y=2x
D.y=lg|x+1|

【答案】D
【解析】解:对于A,函数y= 的图象是中心对称图形,不是轴对称图形,∴不满足题意;
对于B,函数y=﹣x2+1的图象是轴对称图形,在区间(0,+∞)上是单调减函数,∴不满足题意;
对于C,函数y=2x的图象不是轴对称图形,∴不满足题意;
对于D,函数y=lg|x+1|的图象是关于直线x=﹣1对称的图形,且在区间(0,+∞)上是单调增函数,满足题意.
故选:D.
【考点精析】掌握函数单调性的判断方法和函数的奇偶性是解答本题的根本,需要知道单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=2,前n项和为Sn , 若Sn=2(an﹣1),(n∈N+).
(1)求数列{an}的通项公式;
(2)设bn=(log2an+12﹣(log2an2 , 若cn=anbn , 求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四组函数中,表示同一函数的是(
A.f(x)=lgx2 , g(x)=2lgx?
B.f(x)= ? ,g(x)=
C.f(x)=x﹣2,g(x)= ?
D.f(x)=lgx﹣2,g(x)=lg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 + =1(a>b>0)的离心率为 ,且过点( ).
(1)求椭圆方程;
(2)设不过原点O的直线l:y=kx+m(k≠0),与该椭圆交于P、Q两点,直线OP、OQ的斜率依次为k1、k2 , 满足4k=k1+k2 , 试问:当k变化时,m2是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a=cos61°cos127°+cos29°cos37°, ,则a,b,c的大小关系是(
A.a<b<c
B.a>b>c
C.c>a>b
D.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数 在区间[﹣ ]上的图象时,列表并填入了部分数据,如表:

2x﹣

π

﹣π

0

π

x

f(x)


(1)请将上表数据补充完整,并在给出的直角坐标系中,画出f(x)在区间[﹣ ]上的图象;
(2)求f(x)的最小值及取最小值时x的集合;
(3)求f(x)在 时的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动直线l:(3λ+1)x+(1﹣λ)y+6﹣6λ=0过定点P,则点P的坐标为 , 若直线l与x轴的正半轴有公共点,则λ的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,在其定义域上既是奇函数又是增函数的是(
A.y=logax
B.y=x3+x
C.y=3x
D.y=﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数y=f(x)的导函数y=f′(x)的图象,给出下列命题:
①﹣3是函数y=f(x)的极值点;
②﹣1是函数y=f(x)的最小值点;
③y=f(x)在x=0处切线的斜率小于零;
④y=f(x)在区间(﹣3,1)上单调递增.
则正确命题的序号是

查看答案和解析>>

同步练习册答案