精英家教网 > 高中数学 > 题目详情
15、若函数f(x)是奇函数,且当x∈(-∞,0)时f(x)为增函数,f(-3)=0,又g(x)=x2+x+1,则不等式f(x)g(x)<0的解集为
(-∞,-3)∪(0,3)
分析:x∈(-∞,0)时f(x)为增函数,f(-3)=0,则当x∈(-∞,-3)时,f(x)<0,当x∈(-3,0)时,f(x)>0,又由函数f(x)是奇函数,则当x∈(0,3)时,f(x)<0,当x∈(-3,+∞)时,f(x)>0;而g(x)=x2+x+1>0恒成立,根据不等式的性质,易求不等式f(x)g(x)<0的解集
解答:解:∵x∈(-∞,0)时f(x)为增函数,f(-3)=0,
∴当x∈(-∞,-3)时,f(x)<0,当x∈(-3,0)时,f(x)>0,
又∵函数f(x)是奇函数,
∴当x∈(0,3)时,f(x)<0,当x∈(-3,+∞)时,f(x)>0;
又∵g(x)=x2+x+1>0恒成立,
∴不等式f(x)g(x)<0的解集为(-∞,-3)∪(0,3)
故答案为:(-∞,-3)∪(0,3)
点评:解不等式f(x)g(x)<0要分两种情况,即f(x)<0且g(x)>0,或f(x)>0且g(x)<0,但注意要本题中g(x)=x2+x+1>0恒成立,故只用考虑f(x)<0即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)对任意的x,y∈R,总有f(x)+f(y)=f(x+y),且x<0时,f(x)>0.
(1)求证:函f(x)是奇函数;
(2)求证:函数f(x)是R上的减函数;
(3)若定义在(-2,2)上的函数f(x)满足f(-m)+f(1-m)<0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•遂宁二模)设函数f(x)的定义域为D,若存在非零实数,使得对于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),则称f(x)为M上的l高调函数,现给出下列命题:
①函数f(x)=(
12
)x
为R上的1高调函数;
②函数f (x)=sin 2x为R上的高调函数;
③如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞);
④如果定义域为R的函教f (x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是[一1,1].
其中正确的命题是
②③④
②③④
 (写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)对任意的x,y∈R,总有f(x)+f(y)=f(x+y),且x<0时,f(x)>0.
(1)求证:函f(x)是奇函数;
(2)求证:函数f(x)是R上的减函数;
(3)若定义在(-2,2)上的函数f(x)满足f(-m)+f(1-m)<0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)对任意的x,y∈R,总有f(x)+f(y)=f(x+y),且x<0时,f(x)>0.
(1)求证:函f(x)是奇函数;
(2)求证:函数f(x)是R上的减函数;
(3)若定义在(-2,2)上的函数f(x)满足f(-m)+f(1-m)<0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年四川省遂宁市高考数学二模试卷(理科)(解析版) 题型:解答题

设函数f(x)的定义域为D,若存在非零实数,使得对于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),则称f(x)为M上的l高调函数,现给出下列命题:
①函数为R上的1高调函数;
②函数f (x)=sin 2x为R上的高调函数;
③如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞);
④如果定义域为R的函教f (x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是[一1,1].
其中正确的命题是     (写出所有正确命题的序号).

查看答案和解析>>

同步练习册答案