精英家教网 > 高中数学 > 题目详情
5.已知函数y=lg(x2-x+k)的定义域为R,则k的取值范围是($\frac{1}{4}$,+∞),.

分析 依题意,令g(x)=x2-x+k,利用g(x)>0恒成立即可求得实数k的取值范围

解答 解:∵y=lg(x2-x+k)的定义域为R,
令g(x)=x2-x+k,
则g(x)>0恒成立,
∵g(x)的二次项系数为1>0,
∴△=1-4k<0,
解得k>$\frac{1}{4}$,
∴k的取值范围是($\frac{1}{4}$,+∞),
故答案为:($\frac{1}{4}$,+∞).

点评 本题考查函数恒成立问题,着重考查对数函数的定义域,考查△的应用,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ex-x2-ax.
(I)若函数f(x)的图象在x=0处的切线方程为y=2x+b,求a,b的值;
(Ⅱ)若函数f(x)在R上是增函数,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.一块边长为10cm的正方形铁片按如图所示的阴影部分截下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥(底面是正方形,从顶点向底面作垂线,垂足是底面中心的四棱锥)形容器.
(1)试把容器的容积V表示为x的函数.
(2)若x=6,
①求图2的主视图的面积;
②求异面直线EB与DC所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=log2(3-x)的定义域为 A,设全集U=R,则∁UA=[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图给出的是计算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{10}$的值的一个流程图,其中判断框内应填入的条件是(  )
A.i>5B.i<5C.i>10D.i<10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数$sinhx=\frac{{{e^x}-{e^{-x}}}}{2}$称为“双曲正弦函数”,类似地,函数$coshx=\frac{{{e^x}+{e^{-x}}}}{2}$称为“双曲余弦函数”.
(Ⅰ)判断双曲正弦函数的奇偶性,并证明你的结论;
(Ⅱ)双曲函数的恒等变形多具有与三角函数的恒等变形相似甚至相同的形式,请判断下列等式恒成立的是②.(填写序号)
①sinh2x+cosh2x=1;
②sinh2x=2sinhx•coshy;
③cosh2x=cosh2x-sinh2x.
(Ⅲ)请合理定义“双曲正切函数”y=tanhx,写出用tanhx表示tanh2x的恒等变形式,并证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.f(x)=3x+3x-8,则函数f(x)的零点落在区间(  )参考数据:31.25≈3.9,31.5≈5.2.
A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,对于任意的正整数n都有Sn=n2,且各项均为正数的等比数列{bn}中,b6=b3b4,且b3和b5的等差中项是10.
(1)求数列{an},{bn}的通项公式;
(2)若cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)是定义域为R的偶函数,当x≥0时,f(x)=-x2+2x.
(1)写出该函数的解析式;
(2)在给定的图示中画出函数f(x)的图象(不需列表);
(3)写出该函数值域,单调区间(不要求证明).

查看答案和解析>>

同步练习册答案