精英家教网 > 高中数学 > 题目详情
设f(x)=
1
3
x3+mx2+nx.
(1)如果g(x)=f′(x)-2x-3在x=-2处取得最小值-5,求f(x)的解析式;
(2)如果m+n<10(m,n∈N+),f(x)在单调递减区间的长度是正整数,试求m和n的值.(注:区间(a,b)的长度为b-a)
(1)由题意得g(x)=f′(x)-2x-3=x2+2mx+n-2x-3=(x+m-1)2+(n-3)-(m-1)2
又g(x) 在x=-2处取得最小值-5,
所以
m-1=2
(m-3)2
+(n-3)-(m-1)2=-5
,解得m=3,n=2.
所以f(x)=
1
3
x3+3x2+2x. 
(2)因为f′(x)=x2+2mx+n且f(x)的单调递减区间的长度是正整数,
所以方程f′(x)=0,即x2+2mx+n=0必有两不等实根,
则△=4m2-4n>0,即m2>n.
不妨设方程f′(x)=0的两根分别为x1、x2,则|x1-x2|=
(x1+x22-4x1x2
=2
m2-n
且为正整数.
又因为m+n<10(m,n∈N+),所以m≥2时才能有满足条件的m、n.
当m=2时,只有n=3符合要求;
当m=3时,只有n=5符合要求;
当m≥4时,没有符合要求的n.
故只有m=2,n=3或m=3,n=5满足上述要求.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=
13
x3+mx2+nx.
(1)如果g(x)=f′(x)-2x-3在x=-2处取得最小值-5,求f(x)的解析式;
(2)如果m+n<10(m,n∈N+),f(x)在单调递减区间的长度是正整数,试求m和n的值.(注:区间(a,b)的长度为b-a)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=-
1
3
x3+
1
2
x2+2ax.若f(x)在 (
2
3
,+∞
)存在单调增区间,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
13
x3+ax2
+5x+6在区间[1,3]上为单调减函数,求实数a的取值范围取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
1
3
x3+
1
2
ax2+2bx+c,若当x∈(0,1]时,f(x)取得极大值,x∈(1,2]时,f(x)取得极小值,则
a-1
b-2
的取值范围是
(1,4]
(1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
13
x3+x2-3x+5
(1)求函数f(x)的单调递增区间、递减区间;
(2)当x∈[-1,2]时,求函数的最值.

查看答案和解析>>

同步练习册答案